Acknowledgement
This work was supported by the National Science Foundation of China (Grant number 51778048).
References
- Acharya, M.P., Hendry, M.T. and Martin, C.D. (2017), "Creep behaviour of intact and remoulded fibrous peat", Acta Geotech., 10(2), 145. http://doi.org/10.1007/s11440-017-0545-1.
- Al-Khoury, R. (2002), Plaxis 2D: Version 8, Balkema, Lisse, The Netherlands.
- Boulanger, R.W., Arulnathan, R., Harder, L.F., Torres, R.A. and Driller, M.W. (1998), "Dynamic properties of Sherman Island peat", J. Geotech. Geoenviron. Eng., 124(1), 12-20. http://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(12).
- Buttling, S., Cao, R., Lau, W. and Naicker, D. (2018), "Class A and Class C numerical predictions of the deformation of an embankment on soft ground", Comput. Geotech., 93, 191-203. http://doi.org/10.1016/j.compgeo.2017.06.017.
- Dehghanbanadaki, A., Motamedi, S. and Ahmad, K. (2020), "FEM-based modelling of stabilized fibrous peat by endbearing cement deep mixing columns", Geomech. Eng., 20(1), 75-86. http://doi.org/10.12989/gae.2020.20.1.075.
- Feng, R., Wu, L., Shen, Y., Wang, J. and Zhang, L. (2016), "Study on stress distribution rule of meadow soil ground under embankment", Chin. J. Highway Transport, 29(1), 29-35. http://doi.org/10.19721/j.cnki.1001-7372.2016.01.004.
- Fox, P.J., Edil, T.B. and Lan, L.T. (1994), "Closure to "Cα/Cc concept applied to compression of peat" by Patrick J. Fox, Tuncer B. Edil, and Li‐Tus Lan (August, 1992, Vol. 118, No. 8)", J. Geotech. Eng., 120(4), 767-770. http://doi.org/10.1061/(ASCE)0733-9410(1994)120:4(767).
- GB 50021-2001 (2001), Code for investigation of geotechnical engineering, Ministry of Construction of People's Republic of China; Beijing, China.
- GB/T 50123-1999 (1999), Standard for soil test method, Ministry of Construction of People's Republic of China, Beijing, China.
- Gong, Y. and Chok, Y.H. (2018), "Predicted and measured behaviour of a test embankment on Ballina clay", Comput. Geotech., 93, 178-190. http://doi.org/10.1016/j.compgeo.2017.06.003.
- Gouw, T.L. (2020), "Case histories on the application of vacuum preloading and geosynthetic-reinforced soil structures in Indonesia", Indian Geotech. J., 50(2), 213-237. http://doi.org/10.1007/s40098-019-00391-5.
- Gui, Y., Yu, Z., Liu, H., Cao, J. and Wang, Z. (2016), "Experimental study of the change law of consolidation coefficient of the plateau lacustrine peaty soil", Chin. J. Rock Mech. Eng., 35(S1), 3259-3267. http://doi.org/10.13722/j.cnki.jrme.2014.1445.
- Huang, J. (1999), "Engineering geological characteristics of peat soils in Qidian along the Nanning-Kunming Railway", Subgrade Eng., (06), 6-12.
- Huat, B.B.K., Prasad, A., Asadi, A. and Kazemian, S. (2014), Geotechnics of Organic Soils and Peat, CRC Press/Balkema, Leiden, The Netherlands.
- Jiang, Z. (2006), Peat Soils in Dianchi, Southwest Jiaotong University Press, Chengdu, China.
- Jorat, M.E., Kreiter, S., Morz, T., Moon, V. and de Lange, W. (2013), "Strength and compressibility characteristics of peat stabilized with sand columns", Geomech. Eng., 5(6), 575-594. http://doi.org/10.12989/gae.2013.5.6.575.
- JTG-B01-2014 (2015), Technical Standard of Highway Engineering, Ministry of Transport of the People's Republic of China; Beijing, China.
- Kalantari, B. (2011), "Strength evaluation of air cured, cement treated peat with blast furnace slag", Geomech. Eng., 3(3), 207-218. http://doi.org/10.12989/gae.2011.3.3.207.
- Kalantari, B. and Rezazade, R.K. (2015), "Compressibility behaviour of peat reinforced with precast stabilized peat columns and FEM analysis", Geomech. Eng., 9(4), 415-426. http://doi.org/10.12989/gae.2015.9.4.415.
- Kalantari, B., Prasad, A. and Huat, B.B.K. (2010), "Peat stabilization using cement, polypropylene and steel fibres", Geomech. Eng., 2(4), 321-335. http://doi.org/10.12989/gae.2010.2.4.321.
- Karunawardena, A., Oka, F. and Kimoto, S. (2011), "Elasto-viscoplastic modeling of the consolidation of Sri Lankan peaty clay", Geomech. Eng., 3(3), 233-254. http://doi.org/10.12989/gae.2011.3.3.233.
- Laloui, L., and Ferrari, A. (2013). Multiphysical Testing of Soils and Shales, Springer, Berlin, Germany, New York, U.S.A.
- Li, M. (2006), "Soft soil embankment consolidation settlement characteristics of Jiangmifeng-Huangsongdian first-class highway", M.Sc. Dissertation, Jilin University, Changchun, China.
- Liu, F., Er, L., Lv, Y. and Zhang, M. (2010), "Experiment of influence of decomposition degree on structure characteristics and strength of turfy soil", J. Jilin Univ. Earth Sci. Ed., 40(06), 1395-1400. http://doi.org/10.3969/j.issn.1671-5888.2010.06.023.
- Liu, Y. (2006), "Research on settlement and deformation characteristics of peat soil roadbed", Ph.D. Dissertation, Jilin University, Changchun, China
- Liu, Y. (2014), "Study on the influence of composition and micro structure on the of strength of peat soils in Dianchi", M.Sc. Dissertation, Kunming University of Science and Technology, Kunming, China.
- Lv, Y., Er, L., Xu, Y., Liu, F. and Zhang, M. (2011), "The mechanism of organic matter effect on physical and mechanical properties of turfy soil", Chin. J. Geotech. Eng., 33(4), 655-660.
- Ma, X. (2013), Carbon Reserves and Emissions of Peatlands in China, China Forestry Press, Beijing, China.
- Madaschi, A. and Gajo, A. (2015), "One-dimensional response of peaty soils subjected to a wide range of oedometric conditions", Geotechnique, 65(4), 274-286. http://doi.org/10.1680/geot.14.P.144.
- Madaschi, A. and Gajo, A. (2017), "A one-dimensional viscoelastic and viscoplastic constitutive approach to modeling the delayed behavior of clay and organic soils", Acta Geotech., 12(4), 827-847. http://doi.org/10.1007/s11440-016-0518-9.
- Mao, W. (2015), "Study on the permeability characteristic of turfy soil and its application in the East of Jilin Province", M.Sc. Dissertation, Jilin University, Changchun, China.
- Mesri, G. (2002), "Primary compression and secondary compression", Proceedings of the Symposium on Soil Behavior and Soft Ground Construction Honoring Charles C. "Chuck" Ladd, Cambridge, Massachusetts, U.S.A., October.
- Mesri, G. (2013), "Long-term consolidation behavior interpreted with isotache concept for worldwide clays: By Watabe, Y., Udaka, K., Nakatani, Y., Leroueil, S., 2012. Soils and Foundations 52(3), 449-464", Soils Found., 53(2), 357-359. http://doi.org/10.1016/j.sandf.2013.01.002.
- Mesri, G. and Ajlouni, M. (2007), "Engineering properties of fibrous peats", J. Geotech, Geoenviron. Eng., 133(7), 850-866. http://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850).
- Mesri, G. and Choi, Y.K. (1985), "Settlement analysis of embankments on soft clays", J. Geotech. Eng., 111(4), 441-464. http://doi.org/10.1061/(ASCE)0733-9410(1985)111:4(441).
- Mesri, G., Stark, T.D., Ajlouni, M.A. and Chen, C.S. (1997), "Secondary compression of peat with or without surcharging", J. Geotech. Geoenviron. Eng., 123(5), 411-421. http://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(411).
- Mujah, D., Siaw, K.S. and Tasnim, S. (2016), "Numerical modelling of the consolidation behavior of peat soil improved by sand columns", Soil Mech. Found. Eng., 52(6), 317-321. http://doi.org/10.1007/s11204-016-9347-y.
- Nguyen, H.S., Tashiro, M., Inagaki, M., Yamada, S. and Noda, T. (2015), "Simulation and evaluation of improvement effects by vertical drains/vacuum consolidation on peat ground under embankment loading based on a macro-element method with water absorption and discharge functions", Soils Found., 55(5), 1044-1057. http://doi.org/10.1016/j.sandf.2015.09.007.
- Pronger, J., Schipper, L.A., Hill, R.B., Campbell, D.I. and McLeod, M. (2014), "Subsidence rates of drained agricultural peatlands in New Zealand and the relationship with time since drainage", J. Environ. Qual., 43(4), 1442-1449. http://doi.org/10.2134/jeq2013.12.0505.
- Puppala, A.J., Banerjee, A. and Congress, S.S.C. (2020), Geosynthetics in Geo-Infrastructure Applications, in Durability of Composite Systems, Woodhead Publishing, Oxford, U.K.
- Rezanezhad, F., Price, J.S., Quinton, W.L., Lennartz, B., Milojevic, T. and van Cappellen, P. (2016), "Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists", Chem. Geol., 429, 75-84. http://doi.org/10.1016/j.chemgeo.2016.03.010.
- Samson, L. (1985), "Postconstruction settlement of an expressway built on peat by precompression", Can. Geotech. J., 22(3), 308-312. http://doi.org/10.1139/t85-044.
- Sridharan, A. and Nagaraj, H.B. (2001), "Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties: Reply", Can. Geotech. J., 38(5), 1154. http://doi.org/10.1139/cgj-38-5-1154.
- Sun, X. (2006), "Experimental study on the engineering geological properties of peat soils in Dianchi", M.Sc. Dissertation, Kunming University of Science and Technology, Kunming, China.
- Tan, Y. (2008), "Finite element analysis of highway construction in peat bog", Can. Geotech. J., 45(2), 147-160. http://doi.org/10.1139/T07-076.
- Tashiro, M., Nguyen, S.H., Inagaki, M., Yamada, S. and Noda, T. (2015), "Simulation of large-scale deformation of ultra-soft peaty ground under test embankment loading and investigation of effective countermeasures against residual settlement and failure", Soils Found., 55(2), 343-358. http://doi.org/10.1016/j.sandf.2015.02.010.
- Tyurin, D.A. and Nevzorov, A.L. (2017), "Numerical simulation of long-term peat settlement under the sand embankment", Procedia Eng., 175, 51-56. http://doi.org/10.1016/j.proeng.2017.01.014.
- Wang, F. (2013), "Settlement observation of a pedestrian bridge and investigation of underlying west lake peat soil behavior", M.Sc. Dissertation, Zhejiang University, Hangzhou, China.
- Wang, Z., Er, L., Lv, Y. and Mao, W. (2017), "Study on effect of organic matter content and decomposition degree of turfy soil on its permeability", Subgrade Eng., (01), 18-21. http://doi.org/10.13379/j.issn.1003-8825.2017.01.04
- Wong, L.S. and Somanathan, S. (2019), "Analytical and numerical modelling of one-dimensional consolidation of stabilized peat", Civ. Eng. J., 5(2), 398-411. http://doi.org/10.28991/cej-2019-03091254.
- Xiong, E. (2005), "Research on physical properties and relationship between strain and stress of peat & peaty soil in Yunnan", M.Sc. Dissertation, Kunming University of Science and Technology, Kunming, China.
- Xu, Y. (2008), "Study on engineering geological properties and settlement of turfy soil in seasonal frozen region", Ph.D. Dissertation, Jilin University, Changchun, China.
- Yamada, S., Noda, T., Tashiro, M. and Nguyen, H.S. (2015), "Macro-element method with water absorption and discharge functions for vertical drains", Soils Found., 55(5), 1113-1128. http://doi.org/10.1016/j.sandf.2015.09.012.
- Yang, Z.X., Zhao, C.F., Xu, C.J., Wilkinson, S.P., Cai, Y.Q. and Pan, K. (2016), "Modelling the engineering behaviour of fibrous peat formed due to rapid anthropogenic terrestrialization in Hangzhou, China", Eng. Geol., 215, 25-35. http://doi.org/10.1016/j.enggeo.2016.10.009.
- Yu, Z. (2015), "Experimental study on consolidation and unloading- Rebound deformation of the plateau Lacustrine peaty soil", M.Sc. Dissertation, Kunming University of Science and Technology, Kunming, China.
- Zhang, Y. (2016), "A model test study of the distribution of additional stress and ultimate bearing capacity of meadow soil foundation under embankment", M.Sc. Dissertation, Beijing Jiaotong University, Beijing, China.
- Zhao, C. (2014), "Characterization and constitutive modeling of peat and its engineering application", M.Sc. Dissertation, Zhejiang University, Hangzhou, China.