과제정보
We acknowledge the co-operation of Agriculture Regional Research Centre, Bahawalpur Region, Bahawalpur. Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan, provides a pleasant atmosphere and resources to complete this work.
참고문헌
- P. K. Dahiya, A. R. Linnemann, M. A. J. S. Van Boekel, N. Khetarpaul, R. B. Grewal, and M. J. R. Nout, "Mung Bean: Technological and Nutritional Potential," Crit. Rev. Food Sci. Nutr., vol. 55, no. 5, pp. 670-688, 2015. https://doi.org/10.1080/10408398.2012.671202
- P. K. Pakistan. (2015, 12-06-2016). Mungbean crop pulse in Pakistan. Available: http://edu.par.com.pk/wiki/pluses/mung-bean/
- Z. Anwer. (2007, 10-06-2016). Mungbean -- a rich source of protin. Available: PAKISSAN.com
- D. Axe. (2016, 20-06-2016). Mung Beans Nutrition & Its Big Benefits. Available: https://draxe.com/mung-beans-nutrition/
- E. S. Oplinger, L. L. Hardman, A. R. Kaminski, S. M. Combs, and J. D. Doll, "Mungbean," University of Wisconsin-, MadisonMay,1990.
- Mahajan, Shveta, Das, Amitava, Sardana, and H. Kumar, "Image acquisition techniques for assessment of legume quality," Trends in Food Science & Technology, vol. 42, pp. 116-133, 2015. https://doi.org/10.1016/j.tifs.2015.01.001
- M. A. S. a. S. J. Symons, "A machine vision system for grading lentils," Canadian Grain Commission vol. 43, pp. 7.7-7.14, 2001 2001.
- B. S. a. D. G. S. Anami, "Improved Method for identification and classification of foreign boundries mixed food grain image sample," ICGST- International Journal on Artificial Intelligence and Machine Learning, vol. 9, pp. 1-8, 2009 2009.
- F. Kurtulmus, I. Alibas, and I. Kavdir, "Classification of pepper seeds using machine vision based on neural network " Int. J. Agric. and Biol. Eng. , vol. 9, pp. 51-62, 2016.
- D. Li, Y. Liu, and L. Goa, "Research of maize seeds classification recognition based on the image processing," International Journal of Signal Processing, Image Processing and Pattern Recognition vol. 9, pp. 181-190, 2016.
- K. Sabanci, A. Kayabasi, and A. Toktas, "Computer vision based-method for classification of wheat grains using artificial neural networks " Journal of Science Food Agric., 2016.
- P. Zapotocnzy, "Discrimination of wheat grain varieties using image analysis and multidimensional analysis texture of grain mass " International Journal of food properties, vol. 17, pp. 139-151, 2014. https://doi.org/10.1080/10942912.2011.615085
- M. Huang, J. Tang, B. Yang, and Q. Zhu, "Classification of maize seeds of different years baased on hyperspectral imaging and model updating," Computers and Electronics in Agriculture vol. 122, pp. 139-145, 2016. https://doi.org/10.1016/j.compag.2016.01.029
- X. Zhang, F. Liu, Y. He, and X. Li, "Application of hyperspectral imaging and chemometric calibrations for variety discrimination of maize seeds " Sensors, vol. 12, pp. 17234-17246, 2012. https://doi.org/10.3390/s121217234
- A. A. Abdullah and M. A. Quteishat, "Wheat seeds classification using multi-layer perceptron artificial neural network " International Journal of Electronics Communication and Computer Engineering vol. 6, pp. 307-309, 2015.
- N. Pandey, S. Krishna, and S. Sharma, "Automatic seed classification by shape and color features by using machine vision technology," Internatoinal Journal of Computer Applications Technology and Research vol. 2, pp. 208-213, 2013. https://doi.org/10.7753/IJCATR0202.1023
- Neelam and J. Gupta, "Identification and Classification of Rice varieties using Mahalanobis Distance by Computer Vsision " Journal of Scientific and Research Publications vol. 5, pp. 1-5, 2016.
- R. Birla and P. A. Singh, "An efficient method for quality analysis of rice using machine vision system " Journal of Advance Information Technology vol. 6, pp. 140-145, 2015.
- X. Chen, Y. Xun, W. Li, and J. Zhang, "Combining discriminant analysis and neural networks for corn variety identification " Computers and Electronics in Agriculture, vol. 71, pp. 548-553, 2010.
- S. Ghamari, "Classification of chickpea seeds using supervised and unsupervised neural networks," African Journal of Agricultural Research vol. 7, pp. 3193-3201, 2012.
- H. K. Mebatsion, J. Paliwal, and D. S. Jayas, "Automatic classification of non-touching cereal grains in digital images using limited morphological and color features," Computers and Electronics in Agriculture, vol. 90, pp. 99- 105, 2013. https://doi.org/10.1016/j.compag.2012.09.007
- N. S. Visen, J. Paliwal, J. D.S., and N. D. G. White, "Image analysis of bulk grain samples using neural networks," Canadian Biosystems Engineering, vol. 46, pp. 7.11-7.15, 2004.
- M. Shahid, M. S. Naweed, E. A. Rehmani, and Mutiullah, "Varietal discrimination of wheat seeds by machine vision approach " Life Science Journal vol. 11, pp. 245-252, 2014.
- P. Zapotocnzy, "Application of image texture analysis for varietal classification of barly " International Agrophysics, vol. 26, pp. 81-90, 2012. https://doi.org/10.2478/v10247-012-0012-z
- A. Pourreza, H. Pourreza, M. Abbaspur-Fard, and H. Sadrina, "Identification of nine iranian wheat varieties by texture analysis," Computers and Electronics in Agriculture, vol. 83, pp. 102-108, 2012. https://doi.org/10.1016/j.compag.2012.02.005
- B. V. Canizo, L. B. Escudero, M. B. Perez, R. G. Pellerano, and R. G. Wuilloud, "Intra-regional classification of grape seeds produced in Mendoza province (Argentina) by multi-elemental analysis and chemometrics tools," Food chemistry, vol. 242, pp. 272-278, 2018. https://doi.org/10.1016/j.foodchem.2017.09.062
- M. Perez-Rodriguez, J. E. Gaiad, M. J. Hidalgo, M. V. Avanza, and R. G. Pellerano, "Classification of cowpea beans using multielemental fingerprinting combined with supervised learning," Food Control, vol. 95, pp. 232-241, 2019. https://doi.org/10.1016/j.foodcont.2018.08.001
- A. Materka and P. Szypinski, "MaZda User's Manual MaZda 4.6. download link; 1999-2006," ed, 2009.
- R. M. Haralick, K. Shanmugam, and I. Distein, "Texture Features for Image Classification," IEEE Transactions on System, Man and Cybernetics, vol. SMC-3, pp. 610-621, 1973. https://doi.org/10.1109/TSMC.1973.4309314