DOI QR코드

DOI QR Code

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J. (Department of Information Systems, Faculty of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University)
  • 투고 : 2021.11.05
  • 발행 : 2021.11.30

초록

Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

키워드

참고문헌

  1. M. Hameed, F. Tahir, and M. A. Shahzad, "Empirical comparison of sentiment analysis techniques for social media," Int. J. Adv. Appl. Sci., vol. 5, no. 4, pp. 115-123, 2018. https://doi.org/10.21833/ijaas.2018.04.015
  2. N. Archak, A. Ghose, and P. G. Ipeirotis, "Show me the Money ! Deriving the Pricing Power of Product," Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD '07, pp. 56-65, 2007, doi: 10.1145/1281192.1281202.
  3. Y. Chen and J. Xie, "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Manage. Sci., vol. 54, no. 3, pp. 477-491, 2008, doi: 10.1287/mnsc.1070.0810.
  4. I. El Alaoui, Y. Gahi, R. Messoussi, Y. Chaabi, A. Todoskoff, and A. Kobi, "A novel adaptable approach for sentiment analysis on big social data," J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-018-0120-0.
  5. D. Grabner, M. Zanker, G. Fliedl, and M. Fuchs, "Classification of Customer Reviews based on Sentiment Analysis," Inf. Commun. Technol. Tour. 2012, pp. 460-470, 2012, doi: 10.1007/978-3-7091-1142-0_40.
  6. Q. Sun, J. Niu, Z. Yao, and H. Yan, "Exploring eWOM in online customer reviews: Sentiment analysis at a fine-grained level," Eng. Appl. Artif. Intell., vol. 81, pp. 68-78, 2019, doi: 10.1016/j.engappai.2019.02.004.
  7. J. Jin, P. Ji, and R. Gu, "Identifying comparative customer requirements from product online reviews for competitor analysis," Eng. Appl. Artif. Intell., vol. 49, pp. 61-73, 2016, doi: 10.1016/j.engappai.2015.12.005.
  8. F. e-M. K. Khan, B.B. Baharudin, A. Khan, "Mining opinion from text documents," Adv. Res. Comput. Commun. Eng., vol. 3, no. 7, pp. 217-222.
  9. B. Pang and L. Lee, "Opinion mining and sentiment analysis," Found. Trends Inf. Retr., vol. 2, no. 1-2, pp. 1-135, 2008, doi: 10.1561/1500000011.
  10. M. Z. Asghar, A. Khan, S. Ahmad, and F. M. Kundi, "A Review of Feature Extraction in Sentiment Analysis," J. Basic. Appl. Sci. Res, vol. 4, no. 3, pp. 181-186, 2014.
  11. A. Kumar, K. Srinivasan, W. H. Cheng, and A. Y. Zomaya, "Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data," Inf. Process. Manag., vol. 57, no. 1, 2020, doi: 10.1016/j.ipm.2019.102141.
  12. S. Wang, D. Li, Y. Wei, and H. Li, "A Feature Selection Method Based on Fisher 's Discriminant Ratio for Text Sentiment Classification Suge," Springer-Verlag Berlin Heidelb., pp. 88-97, 2009.
  13. A. Esmin and S. Matwin, "Hierarchical Classification Approach to Emotion Recognition in Twitter Hierarchical Classification Approach to Emotion Recognition in Twitter," 2016, no. March, doi: 10.1109/ICMLA.2012.195.
  14. W. Y. and L. H. A. Wang S, Li D, Song X, "A feature selection method based on improved fisher's discriminant ratio for text sentiment classification," Expert Syst. Appl., vol. 38, no. 7, pp. 8696-8702., 2011. https://doi.org/10.1016/j.eswa.2011.01.077
  15. L. C. H. and C. H. Chen LS, "A neural network based approach for sentiment classification in the blogosphere.," J. Informetr., vol. 5, no. 2, pp. 313-322, 2011. https://doi.org/10.1016/j.joi.2011.01.003
  16. M. Ahmad, S. Aftab, M. S. Bashir, N. Hameed, I. Ali, and Z. Nawaz, "SVM optimization for sentiment analysis," Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 4, pp. 393-398, 2018, doi: 10.14569/IJACSA.2018.090455.
  17. M. Abbas, K. Ali Memon, and A. Aleem Jamali, "Multinomial Naive Bayes Classification Model for Sentiment Analysis," IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019, [Online]. Available: http://paper.ijcsns.org/07_book/201903/20190310.pdf.
  18. J. Khairnar and M. Kinikar, "Sentiment Analysis Based Mining and Summarizing Using SVM-MapReduce," Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 3, pp. 4081-4085, 2014.
  19. B. Liu, "Sentiment Analysis and Opinion Mining," Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1-167, 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.
  20. V. S. D. F. X. Christopher, "Evolving Trends in Conversational Systems with Natural Language Processing," Int. J. Comput. Intell. Informatics, vol. 8, no. 3, pp. 123-129, 2018.
  21. A. See, "Natural Language Processing with Deep Learning: Natural Language Generation," pp. 1-39, 2019.
  22. K. Dashtipour, M. Gogate, A. Adeel, H. Larijani, and A. Hussain, "Sentiment analysis of persian movie reviews using deep learning," Entropy, vol. 23, no. 5, 2021, doi: 10.3390/e23050596.
  23. Q. Tul et al., "Sentiment Analysis Using Deep Learning Techniques: A Review," Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6, 2017, doi: 10.14569/ijacsa.2017.080657.
  24. N. C. Dang, M. N. Moreno-Garcia, and F. De la Prieta, "Sentiment analysis based on deep learning: A comparative study," Electron., vol. 9, no. 3, 2020, doi: 10.3390/electronics9030483.
  25. H. Du, X. Xu, X. Cheng, D. Wu, Y. Liu, and Z. Yu, "Aspect-Specific Sentimental Word Embedding for Sentiment Analysis of Online Reviews," Proc. 25th Int. Conf. Companion World Wide Web, pp. 29-30, 2016, doi: 10.1145/2872518.2889403.
  26. D. Nguyen, K. Vo, D. Pham, M. Nguyen, and T. Quan, "A deep architecture for sentiment analysis of news articles," Adv. Intell. Syst. Comput., vol. 629, pp. 129-140, 2018, doi: 10.1007/978-3-319-61911-8_12.
  27. X. Ouyang, P. Zhou, C. H. Li, and L. Liu, "Sentiment analysis using convolutional neural network," Proc. - 15th IEEE Int. Conf. Comput. Inf. Technol. CIT 2015, 14th IEEE Int. Conf. Ubiquitous Comput. Commun. IUCC 2015, 13th IEEE Int. Conf. Dependable, Auton. Se, pp. 2359-2364, 2015, doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.349.
  28. S. Liao, J. Wang, R. Yu, K. Sato, and Z. Cheng, "CNN for situations understanding based on sentiment analysis of twitter data," Procedia Comput. Sci., vol. 111, pp. 376-381, 2017, doi: 10.1016/j.procs.2017.06.037.
  29. P. Cen, K. Zhang, and D. Zheng, "Sentiment Analysis Using Deep Learning Approach," J. Artif. Intell., vol. 2, no. 1, pp. 17-27, 2020, doi: 10.32604/jai.2020.010132.
  30. Q. Shen, Z. Wang, and Y. Sun, "Sentiment analysis of movie reviews based on CNN-BLSTM," IFIP Adv. Inf. Commun. Technol., vol. 510, pp. 164-171, 2017, doi: 10.1007/978-3-319-68121-4_17.
  31. "https://www.kaggle.com." .