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Summary 
Discrete event systems interact with the external environment to 
decide which action plan is adequate. Some of these interactions 
are not predictable in the modelling phase and require 
consequently an adaptation of the system to the metamorphosed 
behavior of the environment. One of the challenging issues is to 
guarantee safety behavior when failures tend to derive the system 
from normal status. In this paper we propose a framework to 
combine diagnose technique with adaptive control to avoid unsafe 
sate an maintain the normal behavior as long as possible.  
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1. Introduction 

When modeling systems, it is important to reason about 
faulty behavior issues, particularly knowing that fault 
occurrence may lead to serious damage. Indeed, in order to 
design resilient systems, we have to think not only about 
how to detect faults [1, 2, 17], but also about how to react 
to them. The adaptive control can be seen as an alternative 
to answer the question "what to do when a fault occurs?". 
Actually, adaptive systems are reconfigurable systems 
which are able to respond to environmental changes or 
interacting changes by behavior reconfiguration [19]. 
However, before thinking about how to react to fault 
occurrence, we have to answer a more important question, 
that is: how to detect faults efficiently?  In this context, fault 
diagnosis, consists of detecting faulty system behavior, 
localizing its origin and identifying its causes [3, 4, 5, 6], 
can widely help with this issue. Failure detection and 
identification can be state-based [11, 12, 14], language 
based [3, 4, 5, 6, 15], or Petri nets based [13].   

Control theory [7, 10, 19] answer to the question "how to 
force the system respect the safety requirement?". Indeed 
the controller is able to force some controllable events to 
avoid any unsafe state [20, 21]. The plant system generates 
some events that correpond mostly to sensor feedback and 
are uncontrollable by nature [23, 24]. Besides,  the 

controller action have to be optimal [22] in a way that it 
performs  the least restrictions to the system activities. 

The main issue is to recover from errors when they are not 
tractable [14, 17, 18]. In this case, the controller has no 
information to detect reaching any unsafe state. Thus, it is 
interesting to combine the controller with diagnoser action 
in order to detect any system failure and allow the controller 
to switch the system to desired safety specification. 

In this paper, we propose a frmework that benefits from 
diagnoser detection and identification of failure that are 
unobservable sothat the controller guide the system via 
controllable action events to exit any unsafe state and 
respect as long as posible the safety specification of the 
system behavior.  

 

This paper is organized as follows. In the next section, we 
characterize basic concepts and notations to be used. In 
section 3, tecniques for diagnose are presented and studied. 
Section 5 presents the control theory using finite state 
machines. In section 5 we illustrate the proposed technique 
for  adaptive control combined with diagnosis. We conclude 
in section 6. 

 

2. Basic Concepts and Notations 

The following notations are adopted. Σ represents a finite 
set of actions or events. Σ∗ represents an infinite set of all 
possible strings (sequence or concatenation of actions) 
built with symbols from Σ.  

Modelling discrete event systems (DES) frequently uses 
formal languages or finite state machines. In this work, we 
use finite state machines (FSM) according to the following 
definition. 
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A finite state machine is the tuple 𝑃 𝑄, Σ, Δ, 𝑞  where  

 𝑄 is a finite set of states 
 Σ is a finite set of events (or actions) 
 Δ ⊂ Q Σ∗ Q is a finite set of transitions 
 𝑞 ∈ 𝑄 is the initial state 

 
An FSM is nondeterministic where more than one action 
may be possible in the same state. This allow the  FSM to 
model a lager class of DES. 
In Figure 1, an example of FSM is presented. 
 

Fig. 1: Example of DES modelled by FSA 

In this example, the FSM is described by the following 
information. 

 𝑄 1, 2, 3  
 Σ a, b, d  
 Δ 1, a, 2 , 2, b, 3 , 3, d, 1  
 𝑞 1 

3. Techniques of Failure Diagnose  

In general, diagnose technique is used to determine when it 
is possible if the system is in a faulty state. When there is a 
certainty that the system is in a faulty state, the controller 
attempt to guide the system to exit failure status and reach 
a safe state. The diagnoser observes  events that are 
generated by the system to identify the current state. 
However, there are some issues that make this task more 
complicated when some of the events are not observable by 
the diagnoser. 

The main goal of a diagnoser is to detect any abnormal 
behavior and identify the origin of the failure. A failure is 
considered as misfunction of the system that derives from 
normal behavior and generates consequently errors. This 
means that an error is a direct consequence of a failure. 

The occurrence of a fault is usually associated with the 
emission of a set of signals from the system sensors. These 
signals represent the symptoms that allow the detection and 
the identification of the error. 

 

 

The framework architecture of diagnoser is represented in 
Figure 2. Lower layer corresponds to the physical process 

or system operational component while the upper layer is 
the supervision component of the system. Communication 
between both layers is possible via an interface which 
transfer command actions form the upper layer to the 
physical system, and forward visible sensor signals from the 
physical process to the supervisor. These visible signals are 
called observable events. The role of the supervisor is to use 
its computational power with the feedback of the lower 
layer to detect and identify any possible failure. 

 

Fig. 2. failure diagnosis architecture 

Usually, events that are the direct cause of failure are 
unobservable. This makes the task of the diagnoser more 
complicated and require an estimation of all possible states 
of the system in order to deduce the faulty behavior when it 
happens. 

 
We use the following notations  

 Σ is the set of all events 

 Σ ⊆ Σ is the set of unobservable events 

 Σ ⊆ Σ is the set of unobservable events.  

  Σ ⊆ Σ  is the set of failure events 

Remarks: 
 Σ is portioned into Σ  and Σ . This means that 

Σ ∪ Σ Σ and Σ ∩ Σ ϕ.  

 Failure events are unobservable since observable 
failure events are easy to detect immediately 
when they occur. 

The failure detection and identification are based on the 
comparison between observable behavior from physical 
process and expected behavior from system model [1, 2, 3, 
6] in order to analyze the discrepancies between these two 
behaviors and deduce possible errors as shown in Figure 3. 
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Fig. 3 : Model-based Diagnose 

 

The main idea is to design a framework model of the 
process behavior with finite state machine or any equivalent 
model. This model describes the normal behavior as well as 
the failure behavior of the system. Therefore, the diagnoser 
builds a state estimator according to the received observable 
events in a form of finite state machine. This process is 
depicted in Figure 4. 

Fig. 4: Diagnoser tasks 

The Figure 5 illustrates an example of discrete event system 
modelled by finite state machine. This DES is represented 
by the following action sets. 

 Σ a, b, c, d, f1, f2   

 Σ Σ  f1, f2  is the set of unobservable 

events 

 Σ a, b, c, d  is the set of unobservable events.  

 
According to Σ , transitions labeled with f1 and f2 lead to 

failure states. This means that the states 4, 5 and 6 

corresponds to failure behavior.  

Fig. 5: Example of DES modelled by FSA 
 

The diagnoser is represented by the FSM in Figure 5. The 
initial state of the diagnoser FSM and is labeled by N 
indicating a normal behavior. The sate labeled 2N 4F 5F 
indicates that the system may be in state 2 (with normal 
behavior) or in states 5 or 6 (with failure behavior). If a 
diagnoser state is labeled exclusively F, the state is qualified 
Fi-certain. By opposition, if the diagnoser state is labeled 
exclusively N, the state is qualified Normal. Otherwise, the 
state is qualified Fi-uncertain.  

 

Fig. 6 : Diagnoser FSM 
 

The Table 1 illustrate the diagnoser state qualifications 
according to failure certainty.  
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Table1: Failue certainty of the diagnoser 
Failue certainty  Diagnoser state 
Normal 0q  
Fi-uncertain. 1q  
Fi-uncertain. 2q  
Fi-certain. 3q  

Note that no failure is detected if a diagnoser cycle does not 
contain any Fi-certain state. 

4. Control of Discrete Event Systems 

The supervisory control theory is based on Ramage & 
Wonham theory [10, 20, 23, 24]. The main idea is to inhibit 
the production of any action event that may lead to unsafe 
state as mentioned if Figure 7. 
 
Typically, the controller is able to produce only controllable 
actions (referred to as Σ ). Events that are not managed by 
the controller are uncontrollable (referred to as Σ𝑢𝑐 ) and 
corresponds usually sensor feedback. The control 
Algorithm is based on FSM [25]. Each state is considered 
forbidden if it does not meet the safety specification. 
Besides, any state that can lead to a forbidden state by a 
sequence (one or more) of uncontrollable events is 
considered to be weakly forbidden. The controller is 
constructed by truncating any possibility to reach forbidden 
states and weakly forbidden states by acting on controllable 
events to avoid (weakly) forbidden states and obtain the 
most permissive controller. 
 

Fig. 7. Supervisory control architecture 
 
 
Note that Σ is partitioned into Σ𝑐  and Σ𝑢𝑐. This means 
that in controller perspective, an event is either 
controllable or uncontrollable. The complexity of 

controller action resides in avoiding weakly forbidden 
states since they may lead spontaneously to forbidden 
state without any reaction from the controller. A 
system is considered to be controllable when the 
controller succeeds to avoid forbidden without 
reducing the scope of the system. In some  cases the 
controller is brought to reduce some important and 
critical behavior. In this case, the issue is reported to 
the system designer which have to take the necessary 
actions in redesigning to avoid any misbehavior. 

5. Adaptive Control combined with Failure 
Diagnosis 

It is interesting to combine the computational power of the 
diagnoser with controller actions to seek safe and normal 
behavior. The system architecture is represented in Figure 
8. The diagnoser reports any failure behavior to the 
supervisor, then the controller consider all states reported 
by diagnoser as forbidden states and apply the control 
algorithm to avoid reaching those states. 
 

Fig. 8. Supervisory control architecture 

 

 

Consider that 

 𝑃 𝑄, Σ, Δ, 𝑞  is the FSM of the physical 
process model 

 𝐷 𝑄 , Σ , Δ , 𝑞  is the FSM of the diagnoser 
 𝐹 ⊂ 𝑄 is the set of forbidden states 
 𝑊𝐹 ⊂ 𝑄 is the set of weakly forbidden states 
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We present in what follows the adaptive control algorithm. 
The first step is to explore the system FSM to construct the 
diagnoser FSM. The states of the diagnoser FSM are 
composed of possible system states according to observable 
actions and their failure status (N or F). 
Once  the diagnoser is built, it is possible to identify all 
failure states that will be reported to the controller. Then, 
the controller marks all failures as forbidden states. The 
next step is mark all states that lead to forbidden states by 
uncontrollable events as weakly forbidden states. Lastly, 
the controller acts on controllable events to avoid all 
forbidden and weakly forbidden states.  
 

Algorithm of Failure diagnosis with 
adaptive control 

Initially 𝑄 𝑞 𝑞 , 𝑁  
Push (𝑞 ) 
 
While (𝑞 =pop stack) is not empty  
  foreach 𝜎 ∈ Σ  do 
    foreach 𝑞 from 𝑞   
      if 𝑞, 𝑤𝜎𝑤 , 𝑞 ∈ Δ  such that 𝑤 ∈ Σ∗                      

and 𝑤′ ∈ Σ∗  
      then  generate/update state 𝑞  with 

the appropriate status N or F  
      endif 
    end for 
    push 𝑞  
    𝑄 𝑄 ⋃{𝑞  
    Δ Δ ⋃ 𝑞 , 𝜎, 𝑞  
  end for 
end while 
 
foreach 𝑞 ∈ 𝑄  such that 𝑞  is Fi-certain  
  mark each failure state q as forbidden 
  𝐹 𝐹⋃ 𝑞  
end for 
 
foreach 𝑞 ∈ 𝐹 with 𝑞 , 𝑤, 𝑞 ∈ ∆ and 𝑤 ∈ Σ ∗ 
 mark 𝑞  as weakly forbidden   

𝑊𝐹 𝑊𝐹⋃ 𝑞′  
end for 
 
foreach 𝑞 ∈ 𝐹 ∪ 𝑊𝐹 
  for each (𝑞 , 𝜎, 𝑞  ∈ Δ such that 𝜎 ∈ Σ   
    remove (𝑞 , 𝜎, 𝑞  from Δ 
  end for 
end for 
 
The aforementioned algorithm guarantees the safety 
specification properties. This is based on the diagnoser 
construction followed by adaptive control that benefits from 
diagnoser outputs. This Algorithm ensures that all 
forbidden and weakly forbidden states are unreachable by 
controller actions. In this case the adaptive control is 
successful.  
 

Note that this process allows the controller to be maximum 
permissive since only forbidden states are removed and any 
state that reach forbidden states by uncontrollable events. 

5. Conclusion  

In this paper, we presented a method for adaptive control 
that consists of combining diagnose power with the 
controller to guarantee that the system remains as much as 
possible in safe state to guarantee reliability properties. The 
controller collaborates with the diagnoser in order to 
identify and detect failure states which are unobservable in 
most cases. 
 
Future works focuses on the same problem in the context of 
real-time systems. Modelling is based on Timed Automata 
with some restriction to avoid the general undecidability of 
this problem when time is considered in dense context. 
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