DOI QR코드

DOI QR Code

적응형 레이다를 위한 다중대역 혼합기에 관한 연구

The Study on Multi-band Mixer for Adaptive Radar

  • 고민호 (한화시스템 레이다체계3팀) ;
  • 강세벽 (한화시스템 레이다체계3팀)
  • 투고 : 2021.10.07
  • 심사 : 2021.12.17
  • 발행 : 2021.12.31

초록

본 논문은 능동소자에 인가되는 게이트 바이어스 전압을 가변하여 X-, K- 및 Ka-대역 신호를 선택적으로 변환할 수 있는 다중대역 혼합기를 제안하였다. 제안한 다중대역 혼합기는 LO 전력 +6 dBm으로 구동하였고 X-대역의 경우, 게이트 바이어스 전압 -0.8 V에서 변환손실 -10 dB 특성, K-대역에서 게이트 바이어스 전압 -0.3 V에서 변환손실 -9 dB 특성, Ka-대역에서는 게이트 바이어스 전압 -0.2 V에서 변환손실 -7.0 dB 특성을 나타내었다. 모든 대역에서 1-dB 압축점 (P1dB)은 +0.5 dBm 특성을 나타내었다.

This paper presents the multi-band mixer which converts a X-, K- and Ka-band adaptively by adjusting the gate-bias voltage of an active device. The proposed mixer presented a conversion loss of -10 dB at -0.8 V gate-bias voltage for X-band, a conversion loss of -9 dB at -0.3 V gate-bias voltage for K-band and for Ka-band, a conversion loss of -7 dB at -0.2 V gate-bias voltage under the LO power of +6.0 dBm. The 1dB compression point (P1dB) is +0.5 dBm for all band.

키워드

참고문헌

  1. S. Haykin, "Cognitive radar: A way of the furture," IEEE Signal Process. Mag., vol. 23, no. 1, Jan. 2006, pp. 30-40. https://doi.org/10.1109/MSP.2006.1593335
  2. J. Jung and S. Park, "A Study on Adaptive Pattern Null Synthesis for Active Phased Array Antenna," J. of the Korea Institute of Electronic Communication Science, vol. 16, no. 3, June 2021, pp. 407-416. https://doi.org/10.13067/JKIECS.2021.16.3.407
  3. E. O'ciardha, "Generic-device frequency multiplier analysis a unified approach," IEEE Trans. Microwave Theory Tech., vol. MTT-48, no. 7, July 2000, pp. 1134-1141. https://doi.org/10.1109/22.848496
  4. M. Go and S. Kang, "A New Third-Order Harmonic Mixer Design for Microwave Airborne Radar," J. of the Korea Institute of Electronic Communication Science, vol. 15, no. 5, Oct. 2020, pp. 827-834. https://doi.org/10.13067/JKIECS.2020.15.5.827
  5. J. Kim, Y. Joe, S. Kim, M. Go, and H. Park, "Design of Reconfigurable Mixer for Microwave Broadband Receiver," J. of Korean Institute of Electromagnetic Engineering and Science, vol. 26, no. 6, June 2015, pp. 533-539. https://doi.org/10.5515/KJKIEES.2015.26.6.533
  6. Y. H. Liew and J. Joe, "RF and IF ports Matching Circuit synthesis for a Simultaneous Conjugate-Matched Mixer Using Qualsi-Linear Analysis," IEEE Trans. Microwave Theory and Tech., vol. 50, no. 7, Sept. 2002, pp. 2056-2062. https://doi.org/10.1109/TMTT.2002.802316
  7. M. Go, H. Kim, S. Nah, and J. Kim, "A Dual-Mode Mixer for Multi-Band Radar Signal Reception," J. of Korean Institute of Electromagnetic Engineering and Science, vol. 24, no. 11, Nov. 2013, pp. 1047-1054. https://doi.org/10.5515/KJKIEES.2013.24.11.1047
  8. J. Kim, I. Yoon,, M. Go, and H. Park, "Design and Implementation of Broadband RF Amplifier for Microwave Receiver," J. of the Korea Institute of Electronic Communication Science, vol. 10, no. 10, June 2015, pp. 665-67. https://doi.org/10.13067/JKIECS.2015.10.6.665
  9. J. Park and M. Lee, "Harmonic Dual-Band Diode Mixer for the X- and K-Bands," J. of Electromagnetic Engineering and Science, vol. 21, no. 1, Jan. 2021, pp. 64-70. https://doi.org/10.26866/jees.2021.21.1.64
  10. K. L. Deng, Y. B. Wu, Y. L. Tang, H. Wang, and C. H. Chen, "Broadband monolith GaAs-based HEMT diode mixer," Proceeding of the 2000 Asia-Pacific Microwave Conference, Sydney, Australia, 2000, pp. 1135-1138.
  11. H. J. Wei, C. Meng, P. Y. Wu, and K. C. Tsung, "K-band CMOS sub-harmonic resistive mixer with a miniature marchand balun on lossy silicon substrate," IEEE Microwave and Wireless Components Letters, vol. 18, no. 1, 2008, pp. 40-42. https://doi.org/10.1109/LMWC.2007.911991