DOI QR코드

DOI QR Code

Correlation Analysis Between Gait Pattern and Structural Features of Cerebral Cortex in Patients with Idiopathic Normal Pressure Hydrocephalus

특발정상압수두증 환자의 보행 패턴과 대뇌피질의 구조적인 특징의 상관관계 분석

  • Yun, EunKyeong (Department of Biomedical Engineering, Daegu Catholic University) ;
  • Kang, Kyunghun (Department of Neurology, School of Medicine, Kyungpook National University) ;
  • Yoon, Uicheul (Department of Biomedical Engineering, Daegu Catholic University)
  • 윤은경 (대구가톨릭대학교 의공학과) ;
  • 강경훈 (경북대학교 의과대학 신경과학교실) ;
  • 윤의철 (대구가톨릭대학교 의공학과)
  • Received : 2021.12.02
  • Accepted : 2021.12.29
  • Published : 2021.12.31

Abstract

Idiopathic normal-pressure hydrocephalus (INPH) is considered a potentially treatable neurological disorder by shunt surgery and characterized by a triad of symptoms including gait disturbance, cognitive impairment and urinary dysfunction. Although disorders of white matter are generally viewed as the principal pathological features of INPH, analysis of cortical features are important since the destruction of neural tracts could be associated with cortical structural changing. The aim of the study was to determine whether there was any relationship between gait parameter and structural features of cerebral cortex in INPH patients. Gait parameters were measured as follows: step width, toe in/out angle, coefficient of variation (CV) value of stride length, CV value of stride time. After obtaining individual brain MRI of patients with INPH and hemispheric cortical surfaces were automatically extracted from each MR volume, which reconstructed the inner and outer cortical surface. Then, cortical thickness, surface area, and volume were calculated from the cortical surface. As a result, step width was positively correlated with bilateral postcentral gyrus and left precentral gyrus, and toe in/out was positively correlated with left posterior parietal cortex and left insula. Also, the CV value of stride length showed positive correlation in the right superior frontal sulcus, left insula, and the CV value of stride time showed positive correlation in the right superior frontal sulcus. Unique parameter of cerebral cortical changes, as measured using MRI, might underline impairments in distinct gait parameters in patients with INPH.

Keywords

Acknowledgement

이 결과물은 2019년도 대구가톨릭대학교 학술연구비 지원에 의한 것임.

References

  1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH, Symptomatic Occult Hydrocephalus with "Normal" Cerebrospinal-Fluid Pressure.A Treatable Syndrome. N Engl J Med, 1965;273:117-26. https://doi.org/10.1056/NEJM196507152730301
  2. Kato T, Sato H, Emi M, Seino T, Arawaka S, Iseki C, Takahashi Y, Wada M, Kawanami, T, Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomegaly: a community-based study. Intern Med, 2011;50(4):297-303. https://doi.org/10.2169/internalmedicine.50.4505
  3. Takahashi Y, Kawanami T, Nagasawa H, Iseki C, Hanyu H, Kato T, Familial normal pressure hydrocephalus (NPH) with an autosomal-dominant inheritance: a novel subgroup of NPH. J Neurol Sci, 2011;308(1-2):149-51. https://doi.org/10.1016/j.jns.2011.06.018
  4. Bech-Azeddine R, Hogh P, Juhler M, Gjerris F, Waldemar G, Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry, 2007;78(2):157-61. https://doi.org/10.1136/jnnp.2006.095117
  5. Cabral D, Beach TG, Vedders L, Sue LI, Jacobson S, Myers K, Sabbagh MN, Frequency of Alzheimer's disease pathology at autopsy in patients with clinical normal pressure hydrocephalus. Alzheimers Dement, 2011;7(5):509-13. https://doi.org/10.1016/j.jalz.2010.12.008
  6. Wikkelso C, Andersson H, Blomstrand C, Lindqvist G, The clinical effect of lumbar puncture in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry, 1982; 45(1):64-9. https://doi.org/10.1136/jnnp.45.1.64
  7. Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, Takeuchi T, Kazui H, Koyama H, Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo), 2008;48 Suppl:S1-23. https://doi.org/10.2176/nmc.48.S1
  8. van Uden CJ, Besser MP, Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite). BMC Musculoskelet Disord, 2004;5:13. https://doi.org/10.1186/1471-2474-5-13
  9. McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J, The validity and reliability of the GAITRite system's measurements: A preliminary evaluation. Arch Phys Med Rehabil, 2001;82(3):419-25. https://doi.org/10.1053/apmr.2001.19778
  10. Nelson AJ, Zwick D, Brody S, Doran C, Pulver L, Rooz G, Sadownick M, Nelson, Rothman J, The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait. NeuroRehabilitation, 2002;17(3):255-62. https://doi.org/10.3233/nre-2002-17312
  11. Lim YH, Ko PW, Park KS, Hwang SK, Kim SH, Han J, Yoon U, Lee HW, Kang K, Quantitative Gait Analysis and Cerebrospinal Fluid Tap Test for Idiopathic Normal-pressure Hydrocephalus. Sci Rep, 2019;9(1):16255. https://doi.org/10.1038/s41598-019-52448-3
  12. Johnston B, Atkins MS, Mackiewich B, Anderson M, Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging, 1996;15(2):154-69. https://doi.org/10.1109/42.491417
  13. Braak H, Braak E, Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991;82(4):239-59. https://doi.org/10.1007/BF00308809
  14. Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, Desgranges B, Baron JC, Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage, 2005;27(4):934-46. https://doi.org/10.1016/j.neuroimage.2005.05.015
  15. Worker A, Blain C, Jarosz J, Chaudhuri KR, Barker GJ, Williams SC, Brown R, Leigh PN, Simmons A, Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. PLoS One, 2014;9(12):e114167. https://doi.org/10.1371/journal.pone.0114167
  16. Rimol LM, Nesvag R, Hagler DJ, Jr., Bergmann O, Fennema-Notestine C, Hartberg CB, Haukvik UK, Lange E, Pung CJ, Server A, Melle I, Andreassen OA, Agartz I, Dale AM, Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry, 2012;71(6):552-60. https://doi.org/10.1016/j.biopsych.2011.11.026
  17. Seo SW, Ahn J, Yoon U, Im K, Lee JM, Kim ST, Ahn HJ, Chin J, Jeong Y, Na DL, Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neuroimaging, 2010;20(1):37-45. https://doi.org/10.1111/j.1552-6569.2008.00293.x
  18. Rosano C, Aizenstein HJ, Studenski S, Newman AB, A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J Gerontol A Biol Sci Med Sci, 2007;62(9):1048-55. https://doi.org/10.1093/gerona/62.9.1048
  19. Kang K, Han J, Lee SW, Jeong SY, Lim YH, Lee JM, Yoon U, Abnormal cortical thickening and thinning in idiopathic normal-pressure hydrocephalus. Sci Rep, 2020;10(1):21213. https://doi.org/10.1038/s41598-020-78067-x
  20. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM, Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery, 2005;57(3 Suppl):S4-16;discussion ii-v.
  21. Collins DL, Neelin P, Peters TM, Evans AC, Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr, 1994;18(2):192-205. https://doi.org/10.1097/00004728-199403000-00005
  22. Smith SM, Fast robust automated brain extraction. Hum Brain Mapp, 2002;17(3):143-55. https://doi.org/10.1002/hbm.10062
  23. Sled JG, Zijdenbos AP, Evans AC, A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging, 1998;17(1):87-97. https://doi.org/10.1109/42.668698
  24. Zijdenbos AP, Forghani R, Evans AC, Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging, 2002;21(10):1280-91. https://doi.org/10.1109/TMI.2002.806283
  25. Tohka J, Zijdenbos A, Evans A, Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage, 2004;23(1):84-97. https://doi.org/10.1016/j.neuroimage.2004.05.007
  26. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC, Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage, 2005;27(1):210-21. https://doi.org/10.1016/j.neuroimage.2005.03.036
  27. MacDonald D, Kabani N, Avis D, Evans AC, Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage, 2000;12(3):340-56. https://doi.org/10.1006/nimg.1999.0534
  28. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC, Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex, 2005;15(7):995-1001. https://doi.org/10.1093/cercor/bhh200
  29. Hagler DJ, Jr., Saygin AP, Sereno MI, Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage, 2006;33(4):1093-103. https://doi.org/10.1016/j.neuroimage.2006.07.036
  30. Lyttelton O, Boucher M, Robbins S, Evans A, An unbiased iterative group registration template for cortical surface analysis. Neuroimage, 2007;34(4):1535-44. https://doi.org/10.1016/j.neuroimage.2006.10.041
  31. Hilal S, Xin X, Ang SL, Tan CS, Venketasubramanian N, Niessen WJ, Vrooman H, Wong TY, Chen C, Ikram MK, Risk Factors and Consequences of Cortical Thickness in an Asian Population. Medicine (Baltimore), 2015;94(23):e852. https://doi.org/10.1097/MD.0000000000000852
  32. Espeseth T, Westlye LT, Fjell AM, Walhovd KB, Rootwelt H, Reinvang I, Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E epsilon 4. Neurobiol Aging, 2008;29(3):329-40. https://doi.org/10.1016/j.neurobiolaging.2006.10.030
  33. Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, Molinuevo JL, Sanchez-Valle R, Increased cortical thickness and caudate volume precede atrophy in PSEN1 mutation carriers. J Alzheimers Dis, 2010;22(3):909-22. https://doi.org/10.3233/JAD-2010-100678
  34. Ishii K, Hashimoto M, Hayashida K, Hashikawa K, Chang CC, Nakagawara J, Nakayama T, Mori S, Sakakibara R, A multicenter brain perfusion SPECT study evaluating idiopathic normal-pressure hydrocephalus on neurological improvement. Dement Geriatr Cogn Disord, 2011;32(1):1-10. https://doi.org/10.1159/000328972
  35. Mataro M, Matarin M, Poca MA, Pueyo R, Sahuquillo J, Barrios M, Junque C, Functional and magnetic resonance imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting. J Neurol Neurosurg Psychiatry, 2007;78(4):395-8.
  36. Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J, Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol, 2013;48(3):690-701. https://doi.org/10.1007/s12035-013-8460-4
  37. Vargas-Sanchez K, Mogilevskaya M, Rodriguez-Perez J, Rubiano MG, Javela JJ, Gonzalez-Reyes RE, Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget, 2018;9(42):26954-26976. https://doi.org/10.18632/oncotarget.25485
  38. Gaist D, Hougaard A, Garde E, Reislev NL, Wiwie R, Iversen P, Madsen CG, Blaabjerg M, Nielsen HH, Kroigard T, Ostergaard K, Kyvik KO, Hjelmborg J, Madsen K, Siebner HR, Ashina M, Migraine with visual aura associated with thicker visual cortex. Brain, 2018;141(3):776-785. https://doi.org/10.1093/brain/awx382
  39. Baril AA, Gagnon K, Brayet P, Montplaisir J, De Beaumont L, Carrier J, Lafond C, L'Heureux F, Gagnon JF, Gosselin N, Gray Matter Hypertrophy and Thickening with Obstructive Sleep Apnea in Middle-aged and Older Adults. Am J Respir Crit Care Med, 2017;195(11):1509-1518. https://doi.org/10.1164/rccm.201606-1271oc
  40. Miller JM, McAllister JP, 2nd, Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res, 2007;4:5. https://doi.org/10.1186/1743-8454-4-5
  41. Kaas JH, Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol, 2004; 281(1):1148-56. https://doi.org/10.1002/ar.a.20120
  42. Rosso AL, Studenski SA, Chen WG, Aizenstein HJ, Alexander NB, Bennett DA, Black, SE, Camicioli R, Carlson MC, Ferrucci L, Guralnik JM, Hausdorff JM, Kaye J, Launer LJ, Lipsitz LA, Verghese J, Rosano C, Aging, the central nervous system, and mobility. J Gerontol A Biol Sci Med Sci, 2013; 68(11):1379-86. https://doi.org/10.1093/gerona/glt089
  43. Fukuyama H, Ouchi Y, Matsuzaki S, Nagahama Y, Yamauchi H, Ogawa M, Kimura J, Shibasaki H, Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett, 1997;228(3):183-6. https://doi.org/10.1016/S0304-3940(97)00381-9
  44. Drew T, Prentice S, Schepens B, Cortical and brainstem control of locomotion. Prog Brain Res, 2004;143:251-61. https://doi.org/10.1016/S0079-6123(03)43025-2
  45. Takakusaki K, Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord, 2013;28(11):1483-91. https://doi.org/10.1002/mds.25669
  46. Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T, Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage, 2004;22(4):1722-31. https://doi.org/10.1016/j.neuroimage.2004.05.017
  47. Rosano C, Aizenstein H, Brach J, Longenberger A, Studenski S, Newman AB, Special article: gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J Gerontol A Biol Sci Med Sci, 2008;63(12):1380-8. https://doi.org/10.1093/gerona/63.12.1380
  48. Regnaux JP, Pradon D, Roche N, Robertson J, Bussel B, Dobkin B, Effects of loading the unaffected limb for one session of locomotor training on laboratory measures of gait in stroke. Clin Biomech (Bristol, Avon), 2008;23(6):762-8. https://doi.org/10.1016/j.clinbiomech.2008.01.011
  49. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Diercks C, Palmie S, Mehdorn HM, Illert M, Deuschl G, Gait analysis in idiopathic normal pressure hydrocephalus--which parameters respond to the CSF tap test? Clin Neurophysiol, 2000;111(9):1678-86. https://doi.org/10.1016/S1388-2457(00)00362-X
  50. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G, Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson's disease. J Neurol Neurosurg Psychiatry, 2001;70(3):289-97. https://doi.org/10.1136/jnnp.70.3.289
  51. Mackenzie TN, Bailey AZ, Mi PY, Tsang P, Jones CB, Nelson AJ, Human area 5 modulates corticospinal output during movement preparation. Neuroreport, 2016;27(14):1056-60. https://doi.org/10.1097/wnr.0000000000000655
  52. Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R, Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex, 1995;5(5):391-409. https://doi.org/10.1093/cercor/5.5.391
  53. Anderson TJ, Jenkins IH, Brooks DJ, Hawken MB, Frackowiak RS, Kennard C, Cortical control of saccades and fixation in man. A PET study. Brain, 1994;117(Pt 5):1073-84. https://doi.org/10.1093/brain/117.5.1073
  54. Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE, Multiple nonprimary motor areas in the human cortex. J Neurophysiol, 1997;77(4):2164-74. https://doi.org/10.1152/jn.1997.77.4.2164