Acknowledgement
Authors are grateful to the Hungarian Scientific Research Fund (OTKA) for the financial support of the OTKA K 109233 research project and to the Itasca Consulting Group for providing applied the DEM software (PFC3D).
References
- Bagi, K. (1993), "A quasi-static numerical model for micro-level analysis of granular assemblies", Mech. Mater., 16, 101-110. https://doi.org/10.1016/0167-6636(93)90032-m.
- Bazant, Z.P. (1984), "Size effect in blunt fracture; concrete, rock, metal", J. Eng. Mech. Am. Soc. Civil Eng., 110, 518-535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518).
- Bazant, Z.P. (1987), "Fracture energy of heterogeneous material and similitude", SEM-RILEM Int. Conf. Fract. Concrete Rock, 390-402. https://doi.org/10.1007/978-1-4612-3578-1_23.
- Bazant, Z.P. (1989), "Identification of strain-softening constitutive relation from uniaxial tests by series coupling model for localization", Cement Concrete Res., 19, 973-977. https://doi.org/10.1016/0008-8846(89)90111-7.
- Bazant, Z.P. (1993), "Size effect in tensile and compressive quasibrittle failures I. part", JCI Int. Workshop Size Effect Concrete Struct., 141-160.
- Bazant, Z.P. (1993), "Size effect in tensile and compressive quasibrittle failure II. part", Proc. Int. Workshop Size Effect Concrete Struct., Sendai, Japan.
- Bazant, Z.P. and Chen, E.P. (1997), "Scaling of structural failure", Appl. Mech. Rev., 50, 593-627. https://doi.org/10.1115/1.3101672.
- Bazant, Z.P. and Xi, Y. (1991), "Statistical size effect in quasi-brittle structures: II. Nonlocal theory", J. Eng. Mech. Am. Soc. Civil Eng., 117, 2623-2640. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2623).
- Bazant, Z.P. and Xiang, Y. (1994), "Compression failure of quasibrittle materials and size effect", ASME Appl. Mech. Div., 185, 143-143.
- Bazant, Z.P. and Xiang, Y. (1997), "Size effect in compression fracture: Splitting crack band propagation", J. Eng. Mech. Am. Soc. Civil Eng., 123, 162-172. https://doi.org/10.1061/(asce)0733-9399(1997)123:2(162).
- Bazant, Z.P., Xi, Y. and Reid, S.G. (1991), "Statistical size effect in quasi-brittle structures: I. Is Weibull theory applicable?", J. Eng. Mech. Am. Soc. Civil Eng., 117, 2609-2622. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2609).
- Camborde, F., Mariotti, C. and Donze, F.V. (2000), "Numerical study of rock and concrete behaviour by discrete element modelling", Comput. Geotech., 27, 225-247. https://doi.org/10.1016/s0266-352x(00)00013-6.
- Cundall, P.A. (1971), "A computer model for simulating progressive large scale movements in blocky rock systems", Proc. Symp. Int. Soc. Rock Mech., Nancy.
- Cundall, P.A. (1988), "Formulation of a three-dimensional distinct element model-Part I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 107-116. https://doi.org/10.1016/0148-9062(88)91214-4.
- del Viso, J.R., Carmona, J.R. and Ruiz, G. (2008), "Shape and size effects on the compressive strength of high-strength concrete", Cement Concrete Res., 38, 386-395. https://doi.org/10.1016/j.cemconres.2007.09.020.
- Dombi, J. (1979), "Epitoanyagok szilardsaga es szilardsagvizsgalata-1", Nyomoszilardsag SZIKKTI Tudomanyos Kozlemenyek. (in Hungarian)
- European Committee for Standardization (CEN) (2010), CEN/TS 12390-9 Testing Hardened Concrete-Part 9: Freeze-Thaw Resistance-Scaling, 24.
- Gulsan, M.E., Abdulhaleem, K.N., Kurtoglu, A.E. and Cevik, A. (2018), "Size effect on strength of Fiber-Reinforced SelfCompacting Concrete (SCC) after exposure to high temperatures", Comput. Concrete, 21(6), 681-695. https://doi.org/10.12989/cac.2018.21.6.681.
- Gyurko, Z and Nemes, R. (2019), "Fracture modelling of normal concrete using different types of aggregates", Eng. Fail. Anal., 101, 464-472. http://doi.org/10.1016/j.engfailanal.2019.04.008.
- Gyurko, Z. and Borosnyoi, A. (2015), "Brinell-hardness testing and discrete element modelling of hardened concrete", Epitoanyag-J. Silicate Base. Compos. Mater., 67(1), 8-11. http://doi.org/10.14382/epitoanyag-jsbcm.2015.2.
- Gyurko, Z. and Nemes, R. (2016), "Effect of standard deviation of contact normal strength in dem for concrete", Conf. Proc. 4th Int. Conf. Contemporary Achievement. Civil Eng., Subotica, April.
- Gyurko, Z. and Nemes, R. (2016), "Size effect on cylinder and cube strength of concrete", Concrete Struct., 17, 18-22.
- Gyurko, Z. and Nemes, R. (2018), "Discrete element modelling of compressive strength testing of no-fines concrete", Multidisciplinary Digital Pub. Inst. Proc., 2(8), 555. http://doi.org/10.3390/icem18-05470.
- Gyurko, Z., Bagi, K. and Borosnyoi, A. (2014), "Discrete Element Modelling of uniaxial compression test of hardened concrete", Epitoanyag-J. Silicate Base. Compos. Mater., 66(4), 113-119. https://doi.org/10.14382/epitoanyag-jsbcm.2014.21.
- Haeri, H., Sarfarazi, V. and Zhu, Z. (2017), "Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)", Comput. Concrete, 19(1), 99-110. https://doi.org/10.12989/cac.2017.19.1.099.
- Haeri, H., Sarfarazi, V. and Zhu, Z. (2018), "PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test", Struct. Eng. Mech., 68(4), 497-505. https://doi.org/10.12989/sem.2018.68.4.497.
- Haeri, H., Sarfarazi, V., Zhu, Z. and Lazemi, H.A. (2018), "Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D", Struct. Eng. Mech., 67(5), 505-516. https://doi.org/10.12989/sem.2018.67.5.505.
- Itasca Consulting Group (2008), Particle Flow Code in Three Dimensions, Users Guide, Minneapolis, Minnesota, USA.
- Karamloo, M., Roudak, M.A. and Hosseinpour, H. (2019), "Size effect study on compressive strength of SCLC", Comput. Concrete, 23(6), 409-419. https://doi.org/10.12989/cac.2019.23.6.409.
- Kim, J.K. and Eo, S.H. (1990), "Size effect in concrete specimens with dissimilar initial cracks", Mag. Concrete Res., 42, 233-238. https://doi.org/10.1680/macr.1990.42.153.233.
- Kim, J.K. and Yi, S.T. (2002), "Application of size effect to compressive strength of concrete members", Sadhana, 27(4), 467-484. https://doi.org/10.1007/bf02706995.
- Kim, J.K. and Yi, S.T. (2004), "Size effect on compressive strength of concrete", Spec. Pub., 118, 179-196.
- Kim, J.K., Eo, S.H. and Park, H.K. (1989), "Size effect in concrete structures without initial crack", Fract. Mech. Applicat. Concrete, 118, 179-196.
- Kim, J.K., Yi, S.T. and Tang, E.I. (2000), "Size effect on flexural compressive strength of concrete specimens", ACI Struct. J., 97, 291-296. https://doi.org/10.14359/859.
- Kim, J.K., Yi, S.T., Park, H.K. and Eo, S.H. (1999), "Size effect on compressive strength of plain and spirally reinforced concrete cylinders", ACI Struct. J., 96, 88-94. https://doi.org/10.14359/599.
- Kuhn, M.R. and Bagi, K. (2009), "Specimen size effect in discrete element simulations of granular assemblies", J. Eng. Mech., 135(6), 485-492. http://doi.org/10.1061/(asce)0733-9399(2009)135:6(485).
- Kumar, S. and Barai, S.V. (2012), "Size-effect of fracture parameters for crack propagation in concrete: A comparative study", Comput. Concrete, 9(1), 1-19. https://doi.org/10.12989/cac.2012.9.1.001.
- Kun, F., Varga, I., Lennartz-Sassinek, S. and Main, I.G. (2013), "Approach to failure in porous granular materials under compression", Phys. Rev., 88(6), 062207.
- Liu, Y., You, Z. and Zhao, Y. (2012), "Three-dimensional discrete element modeling of asphalt concrete: Size effects of elements", Constr. Build. Mater., 37, 775-782. https://doi.org/10.1016/j.conbuildmat.2012.08.007.
- Marketos, G. and Bolton M. (2009), "Compaction bands simulated in discrete element models", J. Struct. Geol., 31(5), 479-490. https://doi.org/10.1016/j.jsg.2009.03.002.
- MSZ EN 4798:2016 (2016), Concrete, Specification, Performance, Production, Conformity, and Rules of Application of EN 206 in Hungary.
- O'Sullivan, C. (2011), Particulate Discrete Element Modelling, CRC Press.
- Palotas, L. (1947), "A vasbeton", (Reinforced concrete-in Hungarian), Magyar Epitomesterek Egyesulete.
- Pollard, D. and Radchenko, P. (2006), "Nonlinear least-squares estimation", J. Multivarate Anal., 97, 548-562. https://doi.org/10.1016/j.jmva.2005.04.002.
- Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
- Rangari, S., Murali, K. and Deb, A. (2018), "Effect of meso-structure on strength and size effect in concrete under compression", Eng. Fail. Mech., 195, 162-185. https://doi.org/10.1016/j.engfracmech.2018.04.006.
- Rousseau, J., Frangin, E., Marin, P. and Daudeville, L. (2008), "Damage prediction in the vicinity of an impact on a concrete structure: A combined FEM/DEM approach", Comput. Concrete, 5(4), 343-358. https://doi.org/10.12989/cac.2008.5.4.343.
- Saad, L., Aissani, A., Chateauneuf, A. and Raphael, W. (2016), "Reliability-based optimization of direct and indirect LCC of RC bridge elements under coupled fatigue-corrosion deterioration processes", Eng. Fail. Anal., 59, 570-587. https://doi.org/10.1016/j.engfailanal.2015.11.006.
- Schafer, B.C., Quigley, S.F. and Chan, A.H. (2004), "Acceleration of the discrete element method (dem) on a reconfigurable co-processor", Comput. Struct., 82(20), 1707-1718. https://doi.org/10.1016/j.compstruc.2004.03.004.
- Shiu, W., Donze, F.V. and Daudeville, L. (2008), "Compaction process in concrete during missile impact: A DEM analysis", Comput. Concrete, 5(4), 329-342. https://doi.org/10.12989/cac.2008.5.4.329.
- Sinaie, S. (2016), "Application of the discrete element method for the simulation of size effects in concrete samples", Int. J. Solid. Struct., 108, 224-253. https://doi.org/10.1016/j.ijsolstr.2016.12.022.
- Suchorzewski, J. and Tejchman, J. (2019), "Investigations of size effect in concrete during splitting using DEM combined with X-Ray Micro-CT scans", Proc. 10th Int. Conf. Fract. Mech. Concrete Concrete Struct., Berkeley, June. https://doi.org/10.21012/fc10.233583.
- Suchorzewski, J., Tejchman, J., Nitka, M. and Bobinski, J. (2019), "Meso-scale analyses of size effect in brittle materials using DEM", Granular Matter, 21(1), 1-19. https://doi.org/10.1007/s10035-018-0862-6.
- Tanigawa, Y. and Yamada, K. (1978), "Size effect in compressive strength of concrete", Cement Concrete Res., 8, 181-190. https://doi.org/10.1016/0008-8846(78)90007-8.
- Wang, Z., Lin, F. and Gu, X. (2008), "Numerical simulation of failure process of concrete under compression based on mesoscopic discrete element model", Tsinghua Sci. Technol., 13, 19-25. https://doi.org/10.1016/s1007-0214(08)70121-4.
- Wang, Z., Ruiken, A., Jacobs, F. and Ziegler, M. (2014), "A new suggestion for determining 2D porosities in DEM studies", Geomech. Eng., 7(6), 665-678. https://doi.org/10.12989/gae.2014.7.6.665.
- Yi, S.T., Yang, E.I. and Choi, J.C. (2006), "Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete", Nucl. Eng. Des., 236, 115-127. https://doi.org/10.1016/j.nucengdes.2005.08.004.
- Zhao, Y., Chang, J. and Gao, H. (2015), "On geometry dependent R-curve from size effect law for concrete-like quasibrittle materials", Comput. Concrete, 15(4), 673-686. https://doi.org/10.12989/cac.2015.15.4.673.
- Zheng, J., An, X. and Huang, M. (2012), "Gpu-based parallel algorithm for particle contact detection and its application in self-compacting concrete flow simulations", Comput. Struct., 112, 193-204. https://doi.org/10.1016/j.compstruc.2012.08.003.