DOI QR코드

DOI QR Code

Evaluation of time-dependent deflections on balanced cantilever bridges

  • Rincon, Luis F. (School of Civil Engineering, Universidad Industrial de Santander) ;
  • Viviescas, Alvaro (School of Civil Engineering, Universidad Industrial de Santander) ;
  • Osorio, Edison (Faculty of Civil Engineering, Universidad Antonio Narino) ;
  • Riveros-Jerez, Carlos A. (School of Engineering, Universidad de Antioquia) ;
  • Lozano-Galant, Jose Antonio (Universidad de Castilla-La Mancha)
  • Received : 2020.12.28
  • Accepted : 2021.11.10
  • Published : 2021.11.25

Abstract

The use of prestressed concrete box girder bridges built by segmentally balanced cantilevers has bloomed in the last decades due to its significant structural and construction advantages in complex topographies. In Colombia, this typology is the most common solution for structures with spans ranging of 80-200 m. Despite its popularity, excessive deflections in bridges worldwide evidenced that time-dependent effects were underestimated. This problem has led to the constant updating of the creep and shrinkage models in international code standards. Differences observed between design processes of box girder bridges of the Colombian code and Eurocode, led to the need for a validation of in-service status of these structures. This study analyzes the long-term behavior of the Tablazo bridge with data scarcity. The measured leveling of this structure is compared with a finite-element model that consider the most widely used creep and shrinkage models in the literature. Finally, an adjusted model evidence excessive deflection on the bridge after six years. Monitoring of this bridge typology in Colombia and updating of the current design code is recommended.

Keywords

Acknowledgement

This research was developed with the support of Universidad Industrial de Santander, Universidad Antonio Narino, and Universidad de Antioquia. This research is funded by Universidad Industrial de Santander through the "Vicerrectoria de Investigacion y Extension" (Project No. 2437 of 2018). This research work was carried out thanks to the information provided by the Gobernacion de Santander. The results obtained from this investigation do not commit the mentioned governmental entities. The financial support of the project BIA2017-86811-C2-2-R funded with FEDER funds is also appreciated.

References

  1. AASHTO (1992), AASHTO Standard Specifications for Highway Bridges, Washington, DC.
  2. AASHTO (2012), AASHTO LRFD Bridge Design Specifications, Washington, DC.
  3. ACI (2008), Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, ACI, Farmington Hills, MI.
  4. AIS (1995), Codigo Colombiano de Diseno Sismico de Puentes, CCDSP-95, Bogota, Colombia.
  5. AIS (2014), Norma Colombiana de Diseno de Puentes LFRD, CCP-14, Bogota, Colombia.
  6. Akl, A., Saiid Saiidi, M. and Vosooghi, A. (2017), "Deflection of in-span hinges in prestressed concrete box girder bridges during construction", Eng. Struct., 131, 293-310. https://doi.org/10.1016/j.engstruct.2016.11.003.
  7. Ates, S. (2011), "Numerical modelling of continuous concrete box girder bridges considering construction stages", Appl. Math. Model., 35(8), 3809-3820. https://doi.org/10.1016/j.apm.2011.02.016.
  8. Bazant, Z.P, Hubler, M.H. and Yu, Q. (2011a), "Excessive creep deflections: An awakening", Concrete Int., 33(8), 44-46.
  9. Bazant, Z.P, Yu, Q., Hubler, M.H., Kristek, V. and Bittnar, Z. (2011b), "Wake-up call for creep, myth about size effect and black holes in safety: What to improve in fib model code draft", Concrete Eng. Excellence Efficiency, Stuttgart.
  10. Bazant, Z.P. (2001), "Prediction of concrete creep and shrinkage: past, present and future", Nucl. Eng. Des., 203(1), 27-38. https://doi.org/10.1016/S0029-5493(00)00299-5.
  11. Bazant, Z.P. and Baweja, S. (1995a), "Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3", Mater. Struct., 28(6), 357-365. https://doi.org/10.1007/BF02473152.
  12. Bazant, Z.P. and Baweja, S. (1995b), "Justification and refinements of model B3 for concrete creep and shrinkage 1 statistics and sensitivity", Mater. Struct., 28(7), 415-430. https://doi.org/10.1007/BF02473078.
  13. Bazant, Z.P., Hubler, M.H. and Yu, Q. (2011c), "Pervasiveness of excessive segmental bridge deflections: Wake-up call for creep", ACI Struct. J., 108(6), 766-774.
  14. Bazant, Z.P., Wendner, R., Hubler, M.H. and Yu, Q. (2012), "Pervasive lifetime inadequacy of long-span box girder bridges and lessons for multi-decade creep prediction", IALCCE Proc. 3rd Int. Symp. Life. Cycl. Civil Eng., Vienna, February.
  15. Bazant, Z.P., Wittmann, F.H. and Wiley, J. (1982), "Creep and shrinkage concrete structures", Earthq. Eng. Struct. Dyn., 11(4), 591-591. https://doi.org/10.1002/eqe.4290110413.
  16. Bazant, Z.R. and Li, G.H. (2008), "Comprehensive database on concrete creep and shrinkage", ACI Mater. J., 105(6), 635-637.
  17. Burdet, O. and Badoux, M. (1999), "Deflection monitoring of prestressed concrete bridges retrofitted by external post-tensioning", IABSE Symp. Struct. Future., 83, 396-403.
  18. Burdet, O.L. (2010), "Thermal effects in the long-term monitoring of bridges", IABSE Symp. Report, 97(19), 62-68. https://doi.org/10.2749/222137810796025465
  19. Campos-Vega, R., Nieto-Figueroa, K.H. and Oomah, B.D. (2018), "Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds", Trend. Food Sci. Technol., 81, 172-184. https://doi.org/10.1016/j.tifs.2018.09.022.
  20. Chen, W.F. and Duan, L. (2014), Bridge Engineering Handbook: Construction and Maintenance, Boca Raton CRC Press.
  21. Chinzorigt, G., Lim, M.K., Yu, M., Lee, H., Enkbold, O. and Choi, D. (2020), "Strength, shrinkage and creep and durability aspects of concrete including CO2 treated recycled fine aggregate", Cement Concrete Res., 136, 106062. https://doi.org/10.1016/j.cemconres.2020.106062.
  22. Comite Euro-International du Beton (CEB) (1999), Structural Concrete Textbook on Behaviour, Design and Performance, fib Bulletin 2.
  23. Comite Euro-International du Beton, Lausanne, Switzerland, 37-52.
  24. Fernandez Casado, C., Manterola Armisen, J. and Fernandez Casado, C.F., Armisen, J.M. and Troyano, L.F. (1970), "Construccion de puentes por voladizos sucesivos mediante dovelas prefabricadas", Revista de Obras Publicas, 117, 715-730.
  25. Gardner, N.J. and Lockman, M.J. (2001), "Design provisions for drying shrinkage and creep of normal strength concrete", ACI Mater. J., 98, 159-167. https://doi.org/10.14359/10199.
  26. Gardner, N.J. and Zhao, J.W. (1993), "Creep and shrinkage revisited", ACI Mater. J., 90(3), 236-246. https://doi.org/10.14359/3875.
  27. Gentile, C. and Bernardini, G. (2010), "An interferometric radar for non-contact measurement of deflections on civil engineering structures: laboratory and full-scale tests", Struct. Infrastr. Eng., 6(5), 521-534. https://doi.org/10.1080/15732470903068557.
  28. Ghali, A., Gayed, R.B. and Kroman, J. (2016), "Sustainability of concrete infrastructures", J. Bridge Eng., 21(7), 04016033. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000862.
  29. Google (2020), Location of Tablazo Bridge in Colombia, Retrieved October 21, 2020. https://goo.gl/maps/JGCwNcZxqBhtzoQP8.
  30. Holowaty, J. (2015), "Conventional models for creep in normal and high-strength concrete", Arch. Civil Eng. Env., 8(4), 31-38.
  31. Ibrahim, N., Omenzetter, P. and Lipscombe, P. (2008), "Monitoring system for in-situ measurement of creep and shrinkage effects in a prestressed concrete bridge", Future. Mech. Struct. Mater. Proc. 20th Austral. Conf. Mech. Struct. Mater., ACMSM20, Toowoomba, December. https://doi.org/10.13140/2.1.4885.1524.
  32. Jauregui, D.V., White, K.R., Woodward, C.B. and Leitch, K.R. (2003), "Noncontact photogrammetric measurement of vertical bridge deflection", J. Bridge Eng., 8(4), 212-222. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:4(212).
  33. Jian, X., Xia, Y., Lozano-Galant, J.A. and Sun, L. (2019), "Traffic sensing methodology combining influence line theory and computer vision techniques for girder bridges", J. Sensor., 2019, 3409525. https://doi.org/10.1155/2019/3409525.
  34. Kristek, V., Bazant, Z.P., Zich, M. and Kohoutkova, A. (2006), "Box girder bridge deflections", ACI Concrete Int., 28, 55-63.
  35. Lalanthi, M.C., Kamatchi, P., Balaji Rao, K. and Saibabu, S. (2018), "Methodologies for numerical modelling of prestressed concrete box-girder for long term deflection", Comput. Concrete, 21(3), 269-278. https://doi.org/10.12989/cac.2018.21.3.269.
  36. Leon Duran, D. (2014), "Tras casi un siglo, hay nueva via de Bucaramanga a San Vicente", Vanguardia Liberal, Bucaramanga Colombia. https://www.vanguardia.com/economia/local/tras-casi-un-siglohay-nueva-via-de-bucaramanga-a-san-vicenteIFVL266349#:~:text=12%3A01%20AM-,Tras%20casi%20un%20siglo%2C%20hay%20nueva%20v%C3%ADa%20de%20Bucaramanga%20a,ante%20el%20llenado%20de%20Hidrosogamoso.
  37. Malm, R. and Sundquist, H. (2010), "Time-dependent analyses of segmentally constructed balanced cantilever bridges", Eng. Struct., 32(4), 1038-1045. https://doi.org/10.1016/j.engstruct.2009.12.030.
  38. Midas Civil (2019), Computer Software, MIDAS Information Technology, Seongnam, Korea.
  39. Miyamoto, A., Kawamura, K. and Nakamura, H. (2000), "Bridge management system and maintenance optimization for existing bridges", Comput. Aid. Civil Infrastr. Eng., 15(1), 45-55. https://doi.org/10.1111/0885-9507.00170.
  40. Mohammadhosseini, H., Alyousef, R., Abdul Shukor Lim, N.H., Tahir, M.M., Alabduljabbar, H. and Mohamed, A.M. (2020), "Creep and drying shrinkage performance of concrete composite comprising waste polypropylene carpet fibres and palm oil fuel ash", J. Build. Eng., 30, 101250. https://doi.org/10.1016/j.jobe.2020.101250.
  41. Neville, A.M. (1982), Properties of Concrete, Pitman Publishing Limited.
  42. Oh, B.H. and Yang, H. (2000), "Sensitivity analysis of time-dependent behavior in PSC box girder bridges", J. Struct. Eng., 126(2), 171-179. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(171).
  43. Pan, Z., Fu, C.C. and Jiang, Y. (2011), "Uncertainty analysis of creep and shrinkage effects in long-span continuous rigid frame of sutong bridge", J. Bridge Eng., 16(2), 248-258. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000147.
  44. Perdomo, M.G. (2011), "Estudio comparativo de puentes construidos por voladizos sucesivos", Msc. Dissertation of Philosophy, Universitat Politecnica de Catalunya, Barcelona.
  45. Rincon, L.F., Viviescas, A ., Chio, G., Osorio, E. and Riveros, C. (2019), "Comparative analysis for monitoring long-term behavior of box girder bridges in Colombia", 20th Congress IABSE, New York City.
  46. Robertson, I.N. (2005), "Prediction of vertical deflections for a long-span prestressed concrete bridge structure", Eng. Struct., 27(12), 1820-1827. https://doi.org/10.1016/j.engstruct.2005.05.013.
  47. Rojas Lopez, M.D. (2008), "Premios a la ingenieria colombiana: un compendio de obras nacionales", Universidad Nacional de Colombia, Medellin, Colombia.
  48. Rossi, P., Tailhan, J.L., Le Maou, F., Gaillet, L. and Martin, E. (2012), "Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission", Cement Concrete Res., 42(1), 61-73. https://doi.org/https://doi.org/10.1016/j.cemconres.2011.07.011.
  49. Ruiz, M.F., Muttoni, A. and Gambarova, P.G. (2007), "Relationship between nonlinear creep and cracking of concrete under uniaxial compression", J. Adv. Concrete Technol., 5(3), 383-393. https://doi.org/10.3151/jact.5.383.
  50. Sagara, A. and Pane, I. (2015), "A study on effects of creep and shrinkage in high strength concrete bridges", Proc. Eng., 125, 1087-1093. https://doi.org/10.1016/j.proeng.2015.11.089.
  51. Scheiner, S. and Hellmich, C. (2009), "Continuum microviscoelasticity model for aging basic creep of early-age concrete", J. Eng. Mech., 135(4), 307-323. https://doi.org/10.1061/(asce)0733-9399(2009)135:4(307).
  52. Su, L., Wang, Y., Mei, S. and Li, P. (2017), "Experimental investigation on the fundamental behavior of concrete creep", Constr. Build. Mater., 152, 250-258. https://doi.org/10.1016/j.conbuildmat.2017.06.162.
  53. Takacs, P.F. (2002), "Deformations in concrete cantilever bridges : observations and theoretical modelling", Ph.D. Dissertation of Philosophy, Norwegian University of Science and Technology, Tronheim, Norway.
  54. Tamtsia, B.T. and Beaudoin, J.J. (2000), "Basic creep of hardened cement paste A re-examination of the role of water", Cement Concrete Res., 30(9), 1465-1475. https://doi.org/https://doi.org/10.1016/S0008-8846(00)00279-9.
  55. Tian, Y., Zhang, J., Xia, Q. and Li, P. (2017), "Flexibility identification and deflection prediction of a three-span concrete box girder bridge using impacting test data", Eng. Struct., 146, 158-169. https://doi.org/10.1016/j.engstruct.2017.05.039.
  56. Tong, T., Liu, Z., Zhang, J. and Yu, Q. (2016), "Long-term performance of prestressed concrete bridges under the intertwined effects of concrete damage, static creep and traffic-induced cyclic creep", Eng. Struct., 127, 510-524. https://doi.org/10.1016/j.engstruct.2016.09.004.
  57. Wang, S. and Fu, C.C. (2015), "Simplification of creep and shrinkage analysis of segmental bridges", J. Bridge Eng., 20(8), 1-5. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000728.
  58. Wendner, R., Hubler, M.H. and Bazant, Z.P. (2013), "The B4 model for multi-decade creep and shrinkage prediction", Mech. Phys. Creep Shrinkage Durability Concrete, 429-436. https://doi.org/10.1061/9780784413111.051.
  59. Woolson, I.H. (1905), "Some remarkable tests indicating flow of concrete under pressure", Eng. News, 54(18), 459-460.
  60. Yang, I.H. (2007), "Uncertainty and sensitivity analysis of time-dependent effects in concrete structures", Eng. Struct., 29(7), 1366-1374. https://doi.org/10.1016/j.engstruct.2006.07.015.
  61. Yazdizadeh, Z., Marzouk, H. and Hadianfard, M.A. (2017), "Monitoring of concrete shrinkage and creep using Fiber Bragg Grating sensors", Constr. Build. Mater., 137, 505-512. https://doi.org/10.1016/j.conbuildmat.2017.01.084.
  62. Yu, Q., Bazant, Z.P. and Wendner, R. (2012), "Improved algorithm for efficient and realistic creep analysis of large creep-sensitive concrete structures", ACI Struct. J., 109(5), 665-675.
  63. Zhan, Y., Liu, F., Ma, Z.J., Zhang, Z., Duan, Z. and Song, R. (2019), "Comparison of long-term behavior between prestressed concrete and corrugated steel web bridges", Steel Compos. Struct., 30(6), 535-550. https://doi.org/10.12989/scs.2019.30.6.535.
  64. Zhou, J., Sun, Z., Wei, B., Zhang, L. and Zeng, P. (2021), "Deflection-based multilevel structural condition assessment of long-span prestressed concrete girder bridges using a connected pipe system", Meas. J. Int. Meas. Confederation, 169, 108352. https://doi.org/10.1016/j.measurement.2020.108352.