Acknowledgement
This research was supported by Gaziantep University Scientific Research Projects Unit. (Project Code and Name: MF.12.13-Modeling of Inelastic Behavior of Structures by Soft Computing Techniques).
References
- Beshara, F.B.A., Mustafa, T.S., Mahmoud, A.A. and Khalil, M.M.A. (2020), "Constitutive models for nonlinear analysis of SFRC corbels", J. Build. Eng., 28, 101092. https://doi.org/10.1016/j.jobe.2019.101092.
- Campione, G. (2009a), "Flexural response of FRC corbels", Cement Concrete Compos., 31(3), 204-210. https://doi.org/10.1016/j.cemconcomp.2009.01.006.
- Campione, G. (2009b), "Performance of steel fibrous reinforced concrete corbels subjected to vertical and horizontal loads", J. Struct. Eng., 135(5), 519-529. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:5(519).
- Campione, G., Mendola, L.L. and Mangiavillano, M.L. (2007). "Steel fiber-reinforced concrete corbels: Experimental behavior and shear strength prediction", ACI Struct. J., 104(5), 570-579.
- Deifalla, A., Awad, A., Seleem, H. and Abdelrahman, A. (2020a), "Investigating the behavior of lightweight foamed concrete T-beams under torsion, shear and flexure", Eng. Struct., 219, 110741. https://doi.org/10.1016/j.engstruct.2020.110741.
- Deifalla, A., Awad, A., Seleem, H. and Abdelrahman, A. (2020b), "Experimental and numerical investigation of the behavior of LWFC L-girders under combined torsion", Struct., 26, 362-377. https://doi.org/10.1016/j.istruc.2020.03.070.
- Deifalla, A.F., Zapris, A.G. and Chalioris, C.E. (2021), "Multivariable regression strength model for steel fiber-reinforced concrete beams under torsion", Mater., 14(14), 3889. https://doi.org/10.3390/ma14143889.
- Deluce, J.R. (2011), "Cracking behaviour of steel fibre reinforced concrete containing conventional steel reinforcement", M.Sc. Dissertation of Philosophy, University of Toronto, Toronto. http://hdl.handle.net/1807/29523.
- Fattuhi, N.I. (1987), "SFRC corbel tests", ACI Struct. J., 84(2), 119-123.
- Fattuhi, N.I. (1990a), "Column-load effect on reinforced concrete corbels", J. Struct. Eng., 116(1), 188-197. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:1(188).
- Fattuhi, N.I. (1990b), "Strength of SFRC corbels subjected to vertical load", J. Struct. Eng., 116(3), 701-718. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(701).
- Fattuhi, N.I. (1994a), "Strength of FRC corbels in flexure", J. Struct. Eng., 120(2), 360-377. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:2(360).
- Fattuhi, N.I. (1994b), "Reinforced corbels with plain and fibrous concretes", ACI Struct. J., 91(5), 530-536.
- Fattuhi, N.I. (1994c), "Reinforced corbels made with high strength concrete and various secondary reinforcements", ACI Struct. J., 91(4), 376-383.
- Fattuhi, N.I. and Hughes, B.P. (1989b), "Ductility of reinforced concrete corbels containing either steel fibers or stirrups", ACI Struct. J., 86(6), 644-651.
- Fattuhi, N.I. and Hughes. B.P. (1989c), "Reinforced steel fiber concrete corbel with various shear span-to-depth ratios", ACI Mater. J., 86(6), 590-596.
- Gulsan, M.E. (2015), "Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels", Ph.D. Dissertation of Philosophy, University of Gaziantep, Gaziantep.
- Gulsan, M.E. and Shaikhan, M.A. (2018), "A new method for repair of fiber reinforced concrete corbels using steel threaded rods", Earthq. Struct., 15(2), 165-178. https://doi.org/10.12989/eas.2018.15.2.165.
- Gulsan, M.E., Al Jawahery, M.S., Alshawaf, A.H., Hussein, T.A., Abdulhaleem, K.N. and Cevik, A. (2018), "Rehabilitation of normal and self-compacted steel fiber reinforced concrete corbels via basalt fiber", Adv. Concrete Constr., 6(5), 423. https://doi.org/10.12989/acc.2018.6.5.423.
- Gulsan, M.E., Cevik, A. and Kurtoglu, A.E. (2015), "Stochastic finite element based reliability analysis of steel fiber reinforced concrete (SFRC) corbels", Comput. Concrete, 15(2), 279-304. https://doi.org/10.12989/cac.2015.15.2.279.
- Khosravikia, F., Kim, H.S., Yi, Y., Wilson, H., Yousefpour, H., Hrynyk, T. and Bayrak, O. (2018), "Experimental and numerical assessment of corbels designed based on strut-and-tie provisions", J. Struct. Eng., 144(9), 04018138. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002137.
- Kurtoglu, A.E., Gulsan, M.E., Abdi, H.A., Kamil, M.A. and Cevik, A. (2017), "Fiber reinforced concrete corbels: Modeling shear strength via symbolic regression", Comput. Concrete, 20(1), 65-75. https://doi.org/10.12989/cac.2017.20.1.001.
- Md Zin, N., Al-Fakih, A., Nikbakht, E., Teo, W. and Anwar Gad, M. (2019), "Influence of secondary reinforcement on behaviour of corbels with various types of high-performance fiber-reinforced cementitious composites", Mater., 12(24), 4159. https://doi.org/10.3390/ma12244159.
- Mustafa, T.S., Beshara, F.B.A., Mahmoud, A.A. and Khalil, M.M. A. (2019). "An improved strut-and-tie model to predict the ultimate strength of steel fiber-reinforced concrete corbels", Mater. Struct., 52(3), 63. https://doi.org/10.1617/s11527-019-1363-8.
- Parol, J., Al-Qazweeni, J. and Salam, S.A. (2018), "Analysis of reinforced concrete corbel beams using strut and tie models", Comput. Concrete, 21(1), 95-102. https://doi.org/10.12989/cac.2018.21.1.095.
- Ridha, M.M.S, Al-Shafi'i, N.T.H. and Hasan, M.M. (2017), "Ultra-high performance steel fibers concrete corbels: Experimental investigation", Case Study. Constr. Mater., 7, 180-190. https://doi.org/10.1016/j.cscm.2017.07.004.
- Saleh, A., Fathy, A., Farouk, A. and Nasser, M. (2019), "Performance of steel fiber reinforced concrete corbels", IRJIET, 3(2), 22-27. http://doi.org/10.21533/pen.v9i2.2285.
- Strauss, A., Mordini, A. and Bergmeister, K. (2006), "Nonlinear finite element analysis of reinforced concrete corbels at both deterministic and probabilistic levels", Comput. Concrete, 3(2_3), 123-144. https://doi.org/10.12989/cac.2006.3.2_3.123.