DOI QR코드

DOI QR Code

Development of Photonic Quantum Ring Device with Different Oscillation Characteristics for Driving with Secondary Battery

이차전지로 구동하기 위한 다른 발진 특성을 나타내는 조명용 광양자테 소자 개발

  • Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College) ;
  • Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University) ;
  • Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
  • 김경보 (인하공업전문대학 금속재료과) ;
  • 이종필 (중원대학교 전기전자공학과) ;
  • 김무진 (강남대학교 IoT전자공학과)
  • Received : 2021.09.08
  • Accepted : 2021.11.20
  • Published : 2021.11.28

Abstract

We studies to verify results similar to those of previous experiments, and their potential as a lighting device through optical characteristics experiments and resonance and optical characteristics simulations of array devices. The photonic quantum ring (PQR) device having a mesa diameter of 40 ㎛ and an internal hole diameter of 3 ㎛ was fabricated. Through the near-field observation of the fabricated device, it was found that the PQR device operates even at ㎂, and also that the mesa and hole devices are driven independently of each other. As a result of measuring the wavelength spectrum of the device according to the location, the coupling phenomenon due to mesa and holes was confirmed.

최근 조명 산업이 중요한 분야로 인식되면서 PQR (Photonic Quantum Ring) 소자는 LED(Light Emitting Diode)를 대체할 수 있는 차세대 광원이 될 전망이다. 본 연구에서는 기존 연구와 유사한 결과를 검증하고, 소자의 광특성을 분석하기 위해 광섬유가 연결된 스테이지에 x, y, z 좌표를 입력하면 자동으로 이동하며, 또한, 소자에 광섬유를 근접시키는 NSOM (Near field scanning optical microscopy) 장치를 추가한 측정 시스템을 이용하여 소자의 광특성 실험과 공진 및 어레이 소자의 광특성 시뮬레이션을 통해 조명용 소자로 가능성을 검증하고자 하였다. 이를 위해 메사와 홀 형태가 동시에 존재하는 메사 직경 40㎛, 홀 직경 3㎛의 소자를 제작하여 소자의 근접장으로 PQR 소자는 ㎂에서 동작하며, 메사와 홀 소자는 서로 독립적으로 구동됨을 관찰하였다. 위치에 따른 소자의 광파장 스펙트럼을 측정하여 메사와 홀 소자에 의한 커플링 현상을 처음으로 확인하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1F1A1046135).

References

  1. K. B. Kim, J. P. Lee & M. J. Kim (2020). Optical and electrical properties of AZO thin films deposited on OHP films. Journal of Convergence for Information Technology, 10(9), 28-34. DOI : 10.22156/CS4SMB.2020.10.09.028
  2. J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim & O'Dae Kwon (1999). Photonic Quantum Ring. Physical Review Letters, 82(3), 536-539. DOI : 10.1103/PhysRevLett.82.536
  3. O'Dae Kwon, M. J. Kim, S. J. An, D. K. Kim, S. E. Lee, J. Bae, J. H. Yoon, B. H. Park, J. Y. Kim & J. Ahn (2006). Hole emitter of photonic quantum ring. Applied Physics Letters, 89(1), 011108. DOI : 10.1063/1.2219346
  4. D. K. Kim, E. G. Lee & O'Dae Kwon (2007). Optical encoder based on rectangular photonic quantum ring laser's orthogonal polarisation states. Electronics Letters, 43(3), 188-189. DOI : 10.1049/EL:20073042
  5. J. Y. Kim, K. S. Kwak, J. S. Kim & B. K. Kang (2001). Fabrication of photonic quantum ring laser using chemically assisted ion beam etching. Journal of Vacuum Science & Technology B, 19(4), 1334-1338. DOI : 10.1116/1.1382872
  6. M. J. Kim, D. K. Kim, S. E. Lee & O'Dae Kwon (2004). Wet etching fabrication of photonic quantum ring laser. Journal of Applied Physics, 96(9), 4742-4745. DOI : 10.1063/1.1786346
  7. J. P. Lee & M. J. Kim (2017). Characteristics of 32 × 32 Photonic Quantum Ring Laser Array for Convergence Display Technology. Journal of the Korea Convergence Society, 8(5), 161-167. DOI : 10.15207/JKCS.2017.8.5.161
  8. J. H. Yoon, S. J. An, K. H. Kim, J. K. Ku & O'Dae Kwon (2007). Resonance spectrum of a three-dimensional photonic quantum ring laser with an equilateral triangle microcavity. Applied Optics, 46(15), 2969-2974. DOI : 10.1364/AO.46.002969
  9. O'Dae Kwon, M. J. Kim, S. J. An, D. K. Kim & S. E. Lee (2005). Photonic quantum corral, carrier ordering, and photonic quantum dot/ring device. Microelectronics Journal, 36(3-6), 298-300. DOI : 10.1016/j.mejo.2005.02.083
  10. K. B. Kim, J. P. Lee & M. J. Kim (2020). Characterization of photonic quantum ring devices manufactured using wet etching process. Journal of Convergence for Information Technology, 10(6), 28-34. DOI : 10.22156/CS4SMB.2020.10.06.028
  11. B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek & O'Dae Kwon (2001). Evanescent and propagating wave characteristics of the photonic quantum ring laser. Applied Physics Letters, 79(11), 1593-1595. DOI : 10.1063/1.1402655
  12. K. B. Kim, S. N. Lee, Y. H. Kim & M. J. Kim (2020). Three-dimensional Characteristics of the Photonic Quantum Ring Laser. Applied Science and Convergence Technology, 29(4), 67-70. DOI : 10.5757/ASCT.2020.29.4.067
  13. J. W. Bae, J. W. Lee, O'Dae Kwon & V. G. Minogin (2003). Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment. Optics Letters, 28(20), 1861-1863. DOI : 10.1364/OL.28.001861
  14. J. Y. Kim, K. S. Kwak, J. S. Kim & B. K. Kang & O'Dae Kwon (2001). Fabrication of photonic quantum ring laser using chemically assisted ion beam etching. Journal of Vacuum Science & Technology B, 19(4), 1334-1338. DOI : 10.1116/1.1382872
  15. S. K. Buratto (1996). Near-field scanning optical microscopy. Current Opinion in Solid State and Materials Science, 1(4), 485-492. DOI : 10.1016/S1359-0286(96)80062-3
  16. R. Degl'Innocenti, M. Montinaro, J. Xu, V. Piazza, P. Pingue, A. Tredicucci, F. Beltram, H. E. Beere & D. A. Ritchie (2009). Differential Near-Field Scanning Optical Microscopy with THz quantum cascade laser sources. Optics Express, 17(26), 23785-23792. DOI : 10.1364/OE.17.023785