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HEREDITARY AND SEMIHEREDITARY REPRESENTATIONS

OF QUIVERS

Driss Bennis and Adnane Roudi

Abstract. In this paper, we investigate hereditary and semihereditary

representations of quivers over an arbitrary ring. As consequences hered-
itary and semihereditary category of representations of quivers over an

arbitrary ring are characterized.

1. Introduction

In this paper, we are interested in hereditary and semihereditary represen-
tations as well as hereditary and semihereditary category of representations of
an acyclic quiver over a ring. Recall that the hereditary and semihereditary
modules are introduced as a generalization of the classical hereditary and semi-
hereditary rings by Shrikhande in [14] and then independently by Hill in [10].
There are modules whose all submodules (resp., finitely generated submodules)
are projective. They have been widely studied by many authors (sometimes
without mention the name as in [2], [11], [17]).

In a category with enough projectives, one can define hereditary (resp. semi-
hereditary) objects as the ones whose all subobjects (resp., all finitely generated
subobjects) are projective (see [3]). Thus, a category with enough projectives is
hereditary (resp. semihereditary) if every projective object is hereditary (resp.
semihereditary). Our aim in this paper is to investigate these notions in the cat-
egory of representations of an acyclic quiver over a ring. In Section 3, we study
hereditary representations as well as hereditary category of representations of
quivers over arbitrary rings. Our first main result, Theorem 3.2, characterizes
hereditary representations of left rooted quivers (see also Proposition 3.1). In
general the equivalence of Theorem 3.2 fails if we drop the assumption that Q is
a left rooted quiver (see Example 3.6). The second part of Section 3 is devoted
to the study of hereditary category of representations. It is a well-known fact
that, if R is a field and Q is acyclic, connected and has finite number of ver-
tices and arrows, then the category (Q,R-Mod) is hereditary (see for instance
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[15, Theorem 1.7, page 248]). In this paper, as a consequence of Theorem 3.2,
we show that the category (Q,R-Mod) is hereditary if and only if R is semisim-
ple whenever Q is non-discrete and left rooted. As consequences, we find that,
for a non-discrete finite acyclic quiver Q and a ring R, the path algebra RQ is
hereditary if and only if R is semisimple. Then, in particular, for an integer
n ≥ 2, the triangular matrix algebra Tn(R) is hereditary if and only if R is
semisimple (see Corollaries 3.8 and 3.9).

Section 4 studies semihereditary representations and semihereditary cate-
gory of representations. We start with Proposition 4.1 which gives a general
characterization of a semihereditary representation that holds true even in any
Grothendieck category having a family of finitely generated generators (see also
Proposition 4.2). Then, for an acyclic quiver Q, we give necessary conditions
of the fact that X is a semihereditary representation (see Proposition 4.3). In
Theorem 4.4, we prove that the converse holds whenever the quiver is acyclic
and has finite number of vertices and arrows. The last part of the paper studies
semihereditary category of representations. In Proposition 4.5, we characterize
when the category (Q,R-Mod) is semihereditary in terms of flatness and co-
herence for any quiver Q. Then, for a non-discrete acyclic quiver Q, we show
that R is von Neumann regular if the category (Q,R-Mod) is semihereditary
(see Proposition 4.6). For finite quivers, we get an equivalence (see Proposition
4.7). That is, for a non-discrete acyclic quiver Q which has a finite number
of vertices and arrows and a ring R, the path algebra RQ is semihereditary
if and only if R is von Neumann regular. In particular, for an integer n ≥ 2,
the triangular matrix algebra Tn(R) is semihereditary if and only if R is von
Neumann regular (see Corollary 4.8).

In the following section we give some preliminaries on the category of rep-
resentations of a quiver over a ring.

2. Preliminaries

All rings considered in this paper will be associative with identity. Through-
out this paper, R denotes a ring and all modules are left R-modules. The
category of left R-modules is denoted by R-Mod.

We assume the reader has some familiarity with the theory of quiver rep-
resentations by modules. Throughout this paper Q denotes a quiver and the
category of representations of a Q by R-modules is denoted by (Q,R-Mod).
Here, we use the notations of the book [8] (see also [15] for more details on the
classical representation theory). Namely, see [8] for the definition of the useful
functors f∗v , g

∗
v and t∗v (resp., f ′v, g

′
v and t′v). They are used to prove among

other things that (Q,R-Mod) has enough projectives (see also [7, Proposition
5.1.2]). For the reader convenience we recall the characterization of projective
(resp. flat) representation given for left rooted quivers. Recall first that a quiver
Q is said to be left rooted [8, Definition 3.5], if there exists an ordinal number
λ such that the set of vertices V = ∪α<λVα, where the subsets Vα are defined
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by transfinite induction as follows: V0 = {v ∈ V : there is no arrow of Q with
t(a) = v}. For a successor ordinal α, Vα = {v ∈ V α−1 : there is no arrow a of
Qα−1 with t(a) = v}, where Qα−1 = (V α−1, Eα−1) is the subquiver of Q with
V α−1 = V \ Vα−1 and Eα−1 = E \ {a ∈ E : i(a) ∈ Vα−1}. For a limit ordinal
ω, Vω = lim−→Vα = ∪α<ωVα. From [8, Proposition 3.6], a quiver Q is left rooted

if and only if there exists no path of the form · · · → • → • in Q.

Theorem 2.1 ([5], Theorem 3.1). If a representation P of Q is projective,
then the following assertions hold:

(1) P (v) is a projective R-module for any vertex v of Q.
(2) For every vertex v, the morphism ⊕t(a)=vP (s(a)) −→ P (v), where the

morphism P (s(a)) −→ P (v) is P (a), is a split monomorphism.

The converse holds if Q is a left rooted quiver.

For flat representations we have the following characterization.

Theorem 2.2 ([8], Theorem 3.7). If a representation F of Q is flat, then the
following assertions hold:

(1) F (v) is a flat R-module for any vertex v of Q.
(2) For every vertex v the morphism ⊕t(a)=vF (s(a)) −→ F (v), where the

morphism F (s(a)) −→ F (v) is F (a), is a pure monomorphism.

The converse holds if Q is a left rooted quiver.

3. Hereditary representations

In this section we investigate hereditary representations and hereditary cat-
egory of representations. We start with the following result which establishes
a necessary conditions so that a representation be hereditary.

Proposition 3.1. Let Q be an acyclic quiver and X be a hereditary represen-
tation of Q. Then the following statements hold:

(1) X(v) is a hereditary R-module for any vertex v ∈ V .
(2) X(v) is a semisimple R-module for any vertex v which is not a sink.
(3) For every vertex v, the morphism ⊕t(a)=vX(s(a)) −→ X(v), where the

morphism X(s(a)) −→ X(v) is X(a), is a split monomorphism.

Proof. (1) Let v be a vertex and H be an R-submodule of X(v) and consider
the canonical injection h : H −→ X(v). Let us define a representation H as
follows: 

H(v) = H,

H(u) = X(u) if there exists a path p from v to u,

0 otherwise.

And 
H(a) = X(a)h if s(a) = v,

H(a) = X(a) if there exists a path p from v to s(a),

0 otherwise.
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It is clear that H is a subrepresentation of X. By hypothesis, H is a projective
representation. Then, H is a projective R-module.

(2) Suppose that v is not a sink. Then, there exists an arrow a : v → w and so
the induced morphism ⊕t(α)=wH(u) −→ H(w) exists. Then, by Theorem 2.1,

it is a split monomorphism. Then, for any arrow α such that t(α) = w, H(α)

is also a split monomorphism. Then, H(a) = X(a)h is a split monomorphism,
and so is h. This shows that X(v) is a semisimple R-module.

(3) holds by Theorem 2.1 since X is projective. �

The previous proposition shows that the conditions (1), (2) and (3) are
necessary for a representation to be hereditary for any acyclic quiver. Now, we
are going to show that such conditions are sufficient for any left rooted quivers.
Afterwards, we will give an example of a non-left rooted quiver with which the
conditions fails to be sufficient.

Theorem 3.2. Let Q be a left rooted quiver. Then, a representation X is
hereditary if and only if the following statements hold:

(1) X(v) is a hereditary R-module for any vertex v ∈ V .
(2) X(v) is a semisimple R-module for any vertex v does not being a sink.
(3) For every vertex v the morphism ⊕t(a)=vX(s(a)) −→ X(v), where the

morphism X(s(a)) −→ X(v) is X(a), is a split monomorphism.

Proof. (⇒) is Proposition 3.1.
(⇐) We suppose that X satisfies (1), (2) and (3). Let T be a subrepresentation
of X and consider the canonical injection φ : T −→ X. Let v be a vertex of Q.
Then T (v) is an R-submodule of X(v), so T (v) is a projective R-module (since
X satisfies (1)). Now, for any arrow a : u→ v we have the following diagram:

T (u)
φu //

T (a)

��

X(u)

X(a)

��
T (v)

φv

// X(v)

Thus, we get the induced diagram:

⊕t(a)=vT (u)
f //

ψT (v)

��

⊕t(a)=vX(u)

ψX(v)

��
T (v)

φv

// X(v)

where f := ⊕t(a)=vφs(a) and ψX(v) and ψT (v) are the induced morphisms by
X(a) : X(s(a)) −→ X(v) and T (a) : T (s(a)) −→ T (v). Thus, ψX(v)f =
φvψT (v). From (2), φs(a) is a split monomorphism for any arrow a : u →
v. Thus, f is also a split monomorphism. From (3), ψX(v) is also a split
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monomorphism. Then, ψT (v) is a split monomorphism, and so T is projective.
Therefore, X is hereditary. �

Corollary 3.3. For the quiver Q ≡ • → •, a representation X ≡ X(a) :
X(v) → X(w) is hereditary if and only if X(v) and X(w) are hereditary R-
modules, X(w) is a semisimple R-module and X(a) is a split monomorphism.

Corollary 3.4. Let Q be an acyclic quiver, v a vertex of Q and M an R-
module.

(1) If v is not a sink vertex, then f ′v(M) is a hereditary representation if
and only if M is a semisimple R-module.

(2) If v is a sink vertex, then f ′v(M) is a hereditary representation if and
only if M is a hereditary R-module.

Now, we are going to give an example to show that the characterization of
hereditary representations given in Theorem 3.2 is in general not true if Q is
not a left rooted quiver. For that we recall the characterization of projective
representations of the quiver A∞ ≡ · · · • → • → •.

Proposition 3.5 ([5], Theorem 4.1). A representation

P ≡ · · ·Pn+1
fn //Pn

fn−1 // · · ·
f1 //P1

f0 //P0

of A∞ is projective if and only if the following conditions hold:

(1) For every n ∈ N, Pn is a projective R-module.
(2) For every n ∈ N, the morphism fn : Pn+1 −→ Pn is a split monomor-

phism.
(3) For every n ∈ N, there exists a retraction αn of fn such that, if x ∈ Pn,

then there exists a positive integer k ≥ 1 such that αn+k · · ·αn+1(x) =
0.

Example 3.6. Let R be a semisimple ring. We consider the representation

XR ≡ . . . R
id //R

id //R

of A∞ which obviously satisfies the conditions of Theorem 3.2, however XR is
not projective due to Proposition 3.5. Therefore, XR is not hereditary.

The category (Q,R-Mod) is said to be hereditary if every projective repre-
sentation of Q is hereditary.

Proposition 3.7. Let Q be a non-discrete left rooted quiver. Then, the cate-
gory (Q,R-Mod) is hereditary if and only if the ring R is semisimple.

Proof. (=⇒) Let v be a vertex of Q. We have f ′v(R) is hereditary, since such a
representation is projective. As Q is not discrete, we can suppose v to be not
a sink. Therefore, f ′v(R)(v) = R is semisimple.

(⇐=) Let X be a projective representation. We prove that X is hereditary.
We prove that X satisfies the three conditions of Theorem 3.2. Indeed, for any
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vertex v of the quiver Q, X(v) is a semisimple R-module. Then, X(v) is a
hereditary R-module, since X(v) is projective. This shows that the conditions
(1) and (2) are satisfied. The condition (3) is also satisfied since X is projective.
Therefore, X is hereditary. �

It is a well-known fact that the path algebra kQ, for a field k, is hereditary,
when Q is a finite acyclic quiver [15, Theorem 1.7, page 248]. Now using
Proposition 3.7 this result is generalized as follows.

Corollary 3.8. Let Q be a non-discrete finite acyclic quiver. The path algebra
RQ is hereditary if and only if R is semisimple.

Proof. It suffices to recall that, under the assumption, the category RQ-Mod
is equivalent to (Q,R-Mod) and then apply Proposition 3.7. �

We point out that we can also get the necessary condition of Corollary 3.8
using [1, Corollary 3.2].

It is well-known that, for a positive integer n, the triangular matrix algebra
over R

Tn(R) :=


R R . . . R
...

. . .
...

0 . . . R R
0 . . . 0 R


is isomorphic to the path algebra RAn, where An is the line quiver

An : 1 //2 // · · · //n− 1 //n.

Thus, as a direct consequence of Corollary 3.8, we get again a characterization
of when the triangular matrix algebra Tn(R) over a ring R is hereditary. Notice
that the inverse implication of the following result is a classical fact (see [4,
Proposition 13]).

Corollary 3.9. For an integer n ≥ 2, the triangular matrix algebra Tn(R) is
hereditary if and only if R is semisimple.

4. Semihereditary representations

This section is devoted to the study of semihereditary representations and
semihereditary category of representations.

Let us start with a general characterization of semihereditary representa-
tions. Notice that this characterization holds for any semihereditary object in
a Grothendieck category having a family of finitely generated generators.

Proposition 4.1. Let Q be a quiver. A representation X is semihereditary if
and only if the following three conditions are satisfied:

(1) X is a flat representation.
(2) Any subrepresentation T of X is flat.
(3) Any finitely generated subrepresentation T of X is finitely presented.
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Proof. For the “IF” part. We suppose that X is semihereditary. We know that
(Q,R-Mod) is a Grothendieck category and has a family of finitely generated
generators (see for instance [6, page 3]). Then, X is the sum of a family of its
finitely generated subrepresentations ([12, Lemma 2, page 205]). By hypothesis,
they are projectives, so the representation X is flat and hence the first condition
holds. The second condition holds too, since, for any subrepresentation T of
X, any finitely generated subrepresentation of T is also a finitely generated
subrepresentation of X. Consequently, T is flat since it is the sum of a family
of projective representations. To prove the third condition, consider T to be a
finitely generated representation of Q. Then, there exists an epimorphism φ of
representations of the form

φ :
⊕
i∈I

f ′vi(R
ni) −→ T ,

where I is a finite set and, for any i ∈ I, vi is a vertex of Q and ni is an integer.
We suppose that T is a subrepresentation of X. Then, by hypothesis, φ is a
split epimorphism, then

⊕
i∈I f

′
vi(R

ni) = K
⊕
T , where K is the kernel of φ.

Therefore, K is finitely generated, as desired.
For the “ONLY IF” part, consider T to be any finitely generated subrep-

resentation of X. Then, using the conditions (2) and (3), we deduce that T
is a finitely presented flat representation. Therefore, by [16, Theorem 3 and
Lemma 7(ii)], T is projective. �

For any left rooted quiver, we get the following characterization of represen-
tations that satisfy the conditions (1) and (2) of Proposition 4.1. We need to
recall the following notion.

Definition ([9]). We say that an R-module M is Fieldhouse-regular if all its
submodules are pure.

Proposition 4.2. Let Q be a left rooted quiver and X be a representation.
Then, X satisfies (1) and (2) of Proposition 4.1 if and only if the following
three conditions are satisfied:

(1) For any vertex v ∈ Q, X(v) is a flat R-module and any submodule of
it is also flat.

(2) For any vertex v ∈ Q does not being a sink, X(v) is a Fieldhouse-
regular R-module.

(3) The induced homomorphism ψX(v) :
⊕

t(a)=vX(s(a)) −→ X(v) is a

pure monomorphism.

Proof. (⇒) (1) Let H be an R-submodule of X(v), and consider the canonical
injection h : H −→ X(v) . We consider the representation H defined as follows:

H(v) = H,

H(u) = X(u) if there exists a path p from v to u,

0 otherwise.
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And 
H(a) = X(a)h if s(a) = v,

H(a) = X(a) if there exists a path p from v to s(a),

0 otherwise.

It is clear that H is a subrepresentation of X, so by hypothesis H is a flat
representation, then H is a flat R-module (by Theorem 2.2). Therefore, (1)
holds since, by Theorem 2.2, X(v) is also flat.

(2) Suppose that v is not a sink. Then, there exists an arrow of the form
a : v → w. Then, the induced morphism ⊕t(α)=wH(u) −→ H(w) is a pure

monomorphism. So, for any arrow α such that t(α) = w, H(α) is also a pure
monomorphism, then H(a) = X(a)h is a pure monomorphism. Therefore, h is
also a pure monomorphism. This proves the second condition.

(3) holds since X is flat.
(⇐) Let T be a subrepresentation of X and consider the canonical injection

φ : T −→ X. For a vertex v of Q, T (v) is an R-submodule of X(v), so T (v) is
a flat R-module. Now, for any arrow a : u→ v, we have the following diagram:

T (u)
φu //

T (a)

��

X(u)

X(a)

��
T (v)

φv

// X(v)

Thus, we get the induced diagram:

⊕t(a)=vT (u)
f //

ψT (v)

��

⊕t(a)=vX(u)

ψX(v)

��
T (v)

φv

// X(v)

where f := ⊕t(a)=vφs(a) and ψX(v) and ψT (v) are the induced morphisms by
X(a) : X(s(a)) −→ X(v) and T (a) : T (s(a)) −→ T (v). Thus, we have
ψX(v)f = φvψT (v). Using (2), φs(a) is a pure monomorphism. Therefore, f
also is a pure monomorphism. And using (3), ψX(v) is a pure monomorphism.
Then, ψT (v) is a pure monomorphism. Therefore, T is flat and consequently X
satisfies (1) and (2) of Proposition 4.1. �

Now we give necessary conditions of a representation to be semihereditary
for any acyclic quiver. We will show that such conditions are sufficient for an
important class of quivers.

Proposition 4.3. Let Q be an acyclic quiver and X be a semihereditary rep-
resentation. Then, the three following conditions are satisfied:

(1) For any vertex v ∈ Q, X(v) is a semihereditary R-module.
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(2) For any vertex v ∈ Q does not being a sink, X(v) is a Fieldhouse-
regular R-module.

(3) The induced homomorphism ψX(v) :
⊕

t(a)=vX(s(a)) −→ X(v) is a

pure monomorphism.

Proof. From Propositions 4.1 and 4.2, it is clear that (2) and (3) are satisfied.
We prove the assertion (1). Let v ∈ Q be a vertex and Tv be a finitely

generated R-submodule of X(v). We associate a representation Tv to Tv as
follows: For any vertex w, Tv(w) =

∑
p∈Y v

w
X(p)(Tv) and for any arrow a :

w1 → w2, the morphism Tv(a) : Tv(w1) −→ Tv(w2) is defined by the formula

Tv(a)(tp) = X(a)X(p)(t′v)

for any tp = X(p)(t′v) ∈ X(p)(Tv), where p ∈ Y vw . Let us prove that Tv
is a finitely generated subrepresentation of X. First, we prove that Tv is a
subrepresentation of X. Indeed, let w be a vertex of Q. It is clear that Tv(w) =∑
p∈Y v

w
X(p)(Tv) is a submodule of X(w), since X(p)(Tv) is a submodule of

X(w) for any p ∈ Y vw . Now, we show that for any arrow a : w1 → w2 of Q, the
following diagram

Tv(w1)
ιw1 //

Tv(a)

��

X(w1)

X(a)

��
Tv(w2)

ιw2

//X(w2)

is commutative, where ιw1 and ιw2 are the canonical injections. Let t′v ∈ Tv
and tp = X(p)(t′v) ∈ X(p)(Tv), where p ∈ Y vw . Then,

X(a)ιw1
(tv) = X(a)ιw1

X(p)(t′v)

= X(a)X(p)(t′v)

= X(a)X(p)(t′v)

= ιw1
X(ap)(t′v)

= ιw1
Tv(w2)(tv).

Then, X(a)ιw1
= ιw1

Tv(w2). Thus, the diagram above is commutative. Conse-
quently, the representation Tv is a subrepresentation of X. Now, we show that
Tv is finitely generated. We have already that Tv is finitely generated, then
there exists an epimorphism φv : Rn −→ Tv such that n is a positive integer.
For any vertex w of Q, we set φw := ψw

⊕
p∈Y v

w
φv, where ψw :

⊕
p∈Y v

w
Tv −→

Tv(w) is the homomorphism induced by Tv(p) : Tv −→ Tv(w). To show that
φw is epic it suffices to remark that φw is the composition of two epic homomor-
phisms. Now we show that φ := {φu}u∈Q : f ′v(R

n) −→ Tv is a homomorphism
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of representations. That is, for any arrow a : w1 → w2, the following diagram⊕
p∈Y v

w1

Rn
φw1 //

h(a)

��

Tv(w1)

Tv(a)

��⊕
p∈Y v

w2

Rn
φw2

//Tv(w2)

is commutative. We note by h(a) the corresponding homomorphism of f ′v(R
n)

at the arrow a : w1 −→ w2. Indeed, for any t ∈ Rn, we denote by tp =
(0, . . . , t, 0, . . . ) ∈ p ∈ Y vwRn with t is in the p-th position. Then,

φw2h(a)(tp) = ψw2

⊕
p∈Y v

w2

φvh(a)(tp)

= ψw2

⊕
p∈Y v

w2

φv(tap)

= ψw2(0, . . . , φv(t), 0, . . . )

= X(ap)(φv)(t)

= X(a)X(p)(φv)(t)

= Tv(a)ψw1
(((φv)(t))p)

= Tv(a)ψw1(
⊕
p∈Y v

w1

φv)(tp)

= Tv(a)φw1(tp).

Then, φw2h(a) = Tv(a)φw1 . Thus, the diagram above is commutative and so
φ : f ′v(R

n) −→ Tv is a homomorphism of representations. In addition, φ is epic.
Hence, Tv is a finitely generated representation. Also, Tv is a subrepresentation
of X, so Tv is projective. Thus, Tv is a projective R-module. Therefore, X(v)
is a semihereditary R-module. This completes the proof. �

When Q is an acyclic quiver which has a finite number of vertices and arrows,
a representation T of Q is finitely generated (resp., finitely presented) if and
only if T (v) is a finitely generated (resp., a finitely presented) R-module for
any vertex v ∈ Q. Using this fact, we have a situation where the converse
implication of Proposition 4.3 holds as shown by the following result.

Theorem 4.4. Let Q be an acyclic quiver which has a finite number of vertices
and arrows and X be a representation of Q. Then, X is semihereditary if and
only if the following three conditions are satisfied:

(1) For any vertex v ∈ Q, X(v) is a semihereditary R-module.
(2) For any vertex v ∈ Q does not being a sink, X(v) is a Fieldhouse-

regular R-module.
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(3) The induced homomorphism ψX(v) :
⊕

t(a)=vX(s(a)) −→ X(v) is a

pure monomorphism.

Proof. From Proposition 4.3, it remains to prove the converse implication. To
this end, we prove that X satisfies the three conditions of Proposition 4.1. For
any vertex v ∈ Q, X(v) is a semihereditary R-module, then X(v) is a flat
R-module and all its R-submodules are also flat. In addition, Q has a finite
number of vertices and arrows, then Q is left rooted, so from Proposition 4.2,
X is flat and all its subrepresentations are also flat. It remains to show that
any finitely generated subrepresentation of X is finitely presented as well. Let
T be a finitely generated subrepresentation of X. Then, for any vertex v of
Q, T (v) is a finitely generated R-submodule of X(v). Thus, T (v) is a finitely
presented R-module for any vertex v of Q, since X(v) is a semihereditary R-
module. Then, the representation T is finitely presented. This proves that X
is semihereditary, as desired. �

The category (Q,R-Mod) is said to be semihereditary if every projective
representation of Q is semihereditary. As in ring theory context, semihereditary
categories is related with coherence property.

Definition ([13], Definition 1, page 203). An object C in a Grothendieck
category C is said to be coherent, if C is finitely generated and the kernel of
any morphism f : C ′ −→ C is also finitely generated.

The category C is said to be locally coherent, if it has a family of coherent
generators.

Proposition 4.5. Let Q be a quiver. Then, the category (Q,R-Mod) is semi-
hereditary if and only if (Q,R-Mod) is locally coherent and any subrepresenta-
tion of flat representation is also flat.

Proof. ⇒) We suppose that (Q,R-Mod) is semihereditary. Let X be a flat
representation of Q. Let T be a subrepresentation of X and consider the
canonical injection φ : T −→ X. We prove that T is flat. To this end, we
prove that any homomorphism f : S −→ T , with S is a finitely presented
representation, factorizes through a projective representation. Since X is flat,
there exists a projective representation P such that φf is factorized through
P ; that is, there exist two homomorphisms g : S −→ P and ϕ : P −→ X such
that φf = ϕg. Consider the pullback of φ and ϕ:

G
ϕ′ //

φ′

��

P

ϕ

��
T

φ
// X

Then, there exists a homomorphism π : S −→ G such that ϕ′π = g and
φ′π = f . Thus, ϕ′ : G −→ P is a monomorphism, since φ : T −→ X is a
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monomorphism. Then, G is a flat representation, since G is a subrepresentation
of a projective representation. Then, π : S −→ G is factorized through a
projective representation P ′. Therefore, f is factorized through P ′ since φ′π =
f . Now, we show that (Q,R-Mod) is locally coherent; that is, the projective
representation f ′v(R) is coherent for any vertex v ofQ. Indeed, let T be a finitely
generated subrepresentation of f ′v(R). By hypothesis, f ′v(R) is semihereditary,
then T is projective, and so T is finitely presented. Therefore, f ′v(R) is coherent.
⇐) We suppose that (Q,R-Mod) is locally coherent and any subrepresenta-

tion of a flat representation is also flat. Let X be a projective representation
and T be a finitely generated subrepresentation of X. We prove that T is also
projective. We know that the family {f ′v(R)} generates the category (Q,R-
Mod), so there exists an epimorphism ψ :

⊕
i∈I f

′
vi(R) −→ X. Then, ψ is

a split epimorphism, since X is projective. So, X is isomorphic to a subrep-
resentation of

⊕
i∈I f

′
vi(R). Also, T is isomorphic to a subrepresentation of⊕

i∈I f
′
vi(R). So, T is flat since the representation

⊕
i∈I f

′
vi(R) is projective.

In addition, since T is finitely generated, there exists a finite subset J of I such
that T is isomorphic to a subrepresentation of

⊕
i∈J f

′
vi(R). Then, T is finitely

presented. Therefore, T is projective. �

The following result provides a sufficient condition so that (Q,R-Mod) be
semihereditary.

Proposition 4.6. Let Q be a non-discrete acyclic quiver. If the category
(Q,R-Mod) is semihereditary, then R is a von Neumann regular ring.

Proof. Let v be a vertex of Q. We have f ′v(R) is semihereditary since such a
representation is projective. Since Q is non-discrete we can suppose v to not be
a sink. Then, f ′v(R)(v) = R is a Fieldhouse-regular R-module. Consequently,
R is von Neumann regular. �

When Q is finite, we get an equivalence.

Proposition 4.7. Let Q be a non-discrete acyclic quiver which has a finite
number of vertices and arrows. Then, the path algebra RQ is semihereditary if
and only if R is von Neumann regular.

Proof. Showing that RQ is semihereditary is equivalent to show that the cat-
egory (Q,R-Mod) is semihereditary. We only need to prove the converse im-
plication. So, suppose that R is a von Neumann regular ring. We prove that
(Q,R-Mod) is locally coherent and any subrepresentation of a flat representa-
tion is flat too. We first prove that (Q,R-Mod) is locally coherent; equivalently,
f ′v(R) is coherent for any vertex v of Q. Let v be a vertex of Q and X be a
finitely generated subrepresentation of f ′v(R). Then, for any vertex w of Q,
X(w) is a finitely generated submodule of a finitely generated free R-module.
Since R is von Neumann regular, it is coherent, and so X(w) is a finitely pre-
sented R-module. Then, X is a finitely presented representation. This, implies
that f ′v(R) is a coherent representation, and therefore the category (Q,R-Mod)
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is locally coherent. Now, consider a flat representation X. By hypothesis, X(v)
is a Fieldhouse-regular R-module for any vertex v of Q. So, it is clear that X
satisfies the conditions of Proposition 4.2. Then, any subrepresentation of X
is flat. Therefore, from Proposition 4.5, (Q,R-Mod) is semihereditary. �

Thus, as a direct consequence of Corollary 3.8, we get a characterization of
when the triangular matrix algebra Tn(R) over R is semihereditary. Unlike the
hereditary case, [4, Proposition 13], the authors were unable to find a reference
which investigates this question even though it seems to be natural.

Corollary 4.8. For an integer n ≥ 2, the triangular matrix algebra Tn(R) is
semihereditary if and only if R is von Neumann regular.
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