DOI QR코드

DOI QR Code

GORENSTEIN FLAT-COTORSION MODULES OVER FORMAL TRIANGULAR MATRIX RINGS

  • Wu, Dejun (Department of Applied Mathematics Lanzhou University of Technology)
  • 투고 : 2020.12.17
  • 심사 : 2021.09.03
  • 발행 : 2021.11.30

초록

Let A and B be rings and U be a (B, A)-bimodule. If BU has finite flat dimension, UA has finite flat dimension and U ⊗A C is a cotorsion left B-module for any cotorsion left A-module C, then the Gorenstein flat-cotorsion modules over the formal triangular matrix ring $T=\(\array{A&0\\U&B}\)$ are explicitly described. As an application, it is proven that each Gorenstein flat-cotorsion left T-module is flat-cotorsion if and only if every Gorenstein flat-cotorsion left A-module and B-module is flat-cotorsion. In addition, Gorenstein flat-cotorsion dimensions over the formal triangular matrix ring T are studied.

키워드

과제정보

The author would like to thank editorial board and the referee for pertinent comments that improved the exposition.

참고문헌

  1. L. L. Avramov and H.-B. Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129-155. https://doi.org/10.1016/0022-4049(91)90144-Q
  2. L. W. Christensen, S. Estrada, L. Liang, P. Thompson, D. Wu, and G. Yang, A refinement of Gorenstein flat dimension via the flat-cotorsion theory, J. Algebra 567 (2021), 346-370. https://doi.org/10.1016/j.jalgebra.2020.09.024
  3. L. W. Christensen, S. Estrada, and P. Thompson, Homotopy categories of totally acyclic complexes with applications to the flat-cotorsion theory, in Categorical, homological and combinatorial methods in algebra, 99-118, Contemp. Math., 751, Amer. Math. Soc., RI, 2020. https://doi.org/10.1090/conm/751/15112
  4. E. E. Enochs, M. Cort'es-Izurdiaga, and B. Torrecillas, Gorenstein conditions over triangular matrix rings, J. Pure Appl. Algebra 218 (2014), no. 8, 1544-1554. https://doi.org/10.1016/j.jpaa.2013.12.006
  5. E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/9783110803662
  6. R. M. Fossum, P. A. Griffith, and I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin, 1975.
  7. J. Gillespie, The flat model structure on Ch(R), Trans. Amer. Math. Soc. 356 (2004), no. 8, 3369-3390. https://doi.org/10.1090/S0002-9947-04-03416-6
  8. A. Haghany, M. Mazrooei, and M. R. Vedadi, Pure projectivity and pure injectivity over formal triangular matrix rings, J. Algebra Appl. 11 (2012), no. 6, 1250107, 13 pp. https://doi.org/10.1142/S0219498812501071
  9. L. Mao, Cotorsion pairs and approximation classes over formal triangular matrix rings, J. Pure Appl. Algebra 224 (2020), no. 6, 106271, 21 pp. https://doi.org/10.1016/j.jpaa.2019.106271
  10. L. Mao, Gorenstein flat modules and dimensions over formal triangular matrix rings, J. Pure Appl. Algebra 224 (2020), no. 4, 106207, 10 pp. https://doi.org/10.1016/j.jpaa.2019.10620
  11. T. Nakamura and P. Thompson, Minimal semi-flat-cotorsion replacements and cosupport, J. Algebra 562 (2020), 587-620. https://doi.org/10.1016/j.jalgebra.2020.07.001
  12. J. Saroch and J. Stovicek, Singular compactness and definability for Σ-cotorsion and Gorenstein modules, Selecta Math. (N.S.) 26 (2020), no. 2, Paper No. 23, 40 pp. https://doi.org/10.1007/s00029-020-0543-2
  13. D. Wu and C. Yi, Ω-Gorenstein modules over formal triangular matrix rings, Bull. Malays. Math. Sci. Soc. https://doi.org/10.1007/s40840-021-01169-w
  14. P. Zhang, Gorenstein-projective modules and symmetric recollements, J. Algebra 388 (2013), 65-80. https://doi.org/10.1016/j.jalgebra.2013.05.008
  15. R. Zhu, Z. Liu, and Z. Wang, Gorenstein homological dimensions of modules over triangular matrix rings, Turkish J. Math. 40 (2016), no. 1, 146-160. https://doi.org/10.3906/mat-1504-67