Acknowledgement
This work was financially supported by Research Team Project of Jingchu University of Technology (Grant No. TD202006), Research Project of Jingchu University of Technology (Grant No. YB202010, ZX202002, ZX202006), and Hubei Key Laboratory of Applied Mathematics (Hubei University).
References
- D. Chen, Q. Cheng, Q. Wang, and C. Xia, On eigenvalues of a system of elliptic equations and of the biharmonic operator, J. Math. Anal. Appl. 387 (2012), no. 2, 1146-1159. https://doi.org/10.1016/j.jmaa.2011.10.020
- F. R. K. Chung, A. Grigor'yan, and S.-T. Yau, Upper bounds for eigenvalues of the discrete and continuous Laplace operators, Adv. Math. 117 (1996), no. 2, 165-178. https://doi.org/10.1006/aima.1996.0006
- E. M. Harrell, II, and P. L. Michel, Commutator bounds for eigenvalues of some differential operators, in Evolution equations (Baton Rouge, LA, 1992), 235-244, Lecture Notes in Pure and Appl. Math., 168, Dekker, New York, 1995.
- G. N. Hile and M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Univ. Math. J. 29 (1980), no. 4, 523-538. https://doi.org/10.1512/iumj.1980.29.29040
- S. Ilias and O. Makhoul, Universal inequalities for the eigenvalues of a power of the Laplace operator, Manuscripta Math. 132 (2010), no. 1-2, 75-102. https://doi.org/10.1007/s00229-010-0338-4
- M. Levitin and L. Parnovski, Commutators, spectral trace identities, and universal estimates for eigenvalues, J. Funct. Anal. 192 (2002), no. 2, 425-445. https://doi.org/10.1006/jfan.2001.3913
- L. E. Payne, G. P'olya, and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35 (1956), 289-298. https://doi.org/10.1002/sapm1956351289
- R. C. Reilly, Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J. 26 (1977), no. 3, 459-472. https://doi.org/10.1512/iumj.1977.26.26036
- C. J. Thompson, On the ratio of consecutive eigenvalues in N-dimensions, Studies in Appl. Math. 48 (1969), 281-283. https://doi.org/10.1002/sapm1969483281
- Q. Wang and C. Xia, Sharp lower bounds for the first eigenvalues of the bi-Laplace operator, arXiv:1802.05502v5, 2018.
- H. C. Yang, An estimate of the difference between consecutive eigenvalues, preprint IC/91/60 of ICTP, Trieste, 1991.