DOI QR코드

DOI QR Code

LOCAL WELL-POSEDNESS OF DIRAC EQUATIONS WITH NONLINEARITY DERIVED FROM HONEYCOMB STRUCTURE IN 2 DIMENSIONS

  • Lee, Kiyeon (Department of Mathematics Ewha Womans University)
  • Received : 2020.12.14
  • Accepted : 2021.06.04
  • Published : 2021.11.30

Abstract

The aim of this paper is to show the local well-posedness of 2 dimensional Dirac equations with power type and Hartree type nonlin-earity derived from honeycomb structure in Hs for s > $\frac{7}{8}$ and s > $\frac{3}{8}$, respectively. We also provide the smoothness failure of flows of Dirac equations.

Keywords

Acknowledgement

K. Lee was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2020R1F1A1A0106876811).

References

  1. J. Arbunich and C. Sparber, Rigorous derivation of nonlinear Dirac equations for wave propagation in honeycomb structures, J. Math. Phys. 59 (2018), no. 1, 011509, 18 pp. https://doi.org/10.1063/1.5021754
  2. O. Bahat-Treidel, O. Peleg, and M. Segev, Symmetry breaking in honeycomb photonic lattices, Opt. Lett. 33 (2008), 2251-2253. https://doi.org/10.1364/OL.33.002251
  3. I. Bejenaru and S. Herr, The cubic Dirac equation: small initial data in $H^{\frac{1}{2}}$ (ℝ2), Comm. Math. Phys. 343 (2016), no. 2, 515-562. https://doi.org/10.1007/s00220-015-2508-4
  4. I. Bejenaru and T. Tao, Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation, J. Funct. Anal. 233 (2006), no. 1, 228-259. https://doi.org/10.1016/j.jfa.2005.08.004
  5. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrodinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156. https://doi.org/10.1007/BF01896020
  6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009), 109-162. https://doi.org/10.1103/RevModPhys.81.109
  7. Y. Cho and K. Lee, Small data scattering of Dirac equations with Yukawa type potentials in L2x(ℝ2), Diff. Inte. Equ. 34 (7/8) (2021), 425-436.
  8. Y. Cho, K. Lee, and T. Ozawa, Small data scattering of 2d Hatree type Dirac equations, J. Math. Anal. Appl. 506 (2022), no. 1, 125549. https://doi.org/10.1016/j.jmaa.2021.125549
  9. Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal. 38 (2006), no. 4, 1060-1074. https://doi.org/10.1137/060653688
  10. Y. Cho, T. Ozawa, H. Sasaki, and Y. Shim, Remarks on the semirelativistic Hartree equations, Discrete Contin. Dyn. Syst. 23 (2009), no. 4, 1277-1294. https://doi.org/10.3934/dcds.2009.23.1277
  11. V. D. Dinh, On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces, Discrete Contin. Dyn. Syst. 38 (2018), no. 3, 1127-1143. https://doi.org/10.3934/dcds.2018047
  12. K. Fujiwara, V. Georgiev, and T. Ozawa, On global well-posedness for nonlinear semirelativistic equations in some scaling subcritical and critical cases, J. Math. Pures Appl. (9) 136 (2020), 239-256. https://doi.org/10.1016/j.matpur.2019.10.003
  13. J. Ginibre, Y. Tsutsumi, and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), no. 2, 384-436. https://doi.org/10.1006/jfan.1997.3148
  14. R. El Hajj and F. Mehats, Analysis of models for quantum transport of electrons in graphene layers, Math. Models Methods Appl. Sci. 24 (2014), no. 11, 2287-2310. https://doi.org/10.1142/S0218202514500213
  15. K. Fujiwara, V. Georgiev, and T. Ozawa, Higher order fractional Leibniz rule, J. Fourier Anal. Appl. 24 (2018), no. 3, 650-665. https://doi.org/10.1007/s00041-017-9541-y
  16. S. Herr and E. Lenzmann, The Boson star equation with initial data of low regularity, Nonlinear Anal. 97 (2014), 125-137. https://doi.org/10.1016/j.na.2013.11.023
  17. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. https://doi.org/10.1002/cpa.3160410704
  18. C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527-620. https://doi.org/10.1002/cpa.3160460405
  19. C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603. https://doi.org/10.1090/S0894-0347-96-00200-7
  20. K. Lee, Low regularity well-posedness of Hartree type Dirac equations in 2,3-dimensions, To appear in Comm. Pure. Appl. Anal. https://doi.org/10.3934/cpaa.2021126
  21. E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type, Math. Phys. Anal. Geom. 10 (2007), no. 1, 43-64. https://doi.org/10.1007/s11040-007-9020-9
  22. L. Molinet, J. C. Saut, and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), no. 4, 982-988. https://doi.org/10.1137/S0036141001385307
  23. S. Selberg, Bilinear Fourier restriction estimates related to the 2D wave equation, Adv. Differential Equations 16 (2011), no. 7-8, 667-690. https://doi.org/10.57262/ade/1355703202
  24. T. Tao, Multilinear weighted convolution of L2-functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001), no. 5, 839-908. https://doi.org/10.1353/ajm.2001.0035
  25. A. Tesfahun, Long-time behavior of solutions to cubic Dirac equation with Hartree type nonlinearity in ℝ1+2, Int. Math. Res. Not. IMRN 2020 (2020), no. 19, 6489-6538. https://doi.org/10.1093/imrn/rny217
  26. A. Tesfahun, Small data scattering for cubic Dirac equation with Hartree type nonlinearity in ℝ1+3, SIAM J. Math. Anal. 52 (2020), no. 3, 2969-3003. https://doi.org/10.1137/17M1155788
  27. C. Yang, Scattering results for Dirac Hartree-type equations with small initial data, Commun. Pure Appl. Anal. 18 (2019), no. 4, 1711-1734. https://doi.org/10.3934/cpaa.2019081