DOI QR코드

DOI QR Code

Time domain broadband noise predictions for non-cavitating marine propellers with wall pressure spectrum models

  • Choi, Woen-Sug (Center for Naval Ship Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Center for Naval Ship Engineering, Seoul National University) ;
  • Song, Jee-Hun (Center for Naval Ship Engineering, Seoul National University) ;
  • Kwon, Hyun-Wung (Center for Naval Ship Engineering, Seoul National University) ;
  • Park, Il-Ryong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University) ;
  • Seol, Han-Shin (Korea Research Institute of Ships & Ocean Engineering, Korea Institute of Ocean Science & Technology) ;
  • Kim, Min-Jae (The 6th R&D Institute-3rd Directorate, Agency for Defense Development)
  • Received : 2020.05.25
  • Accepted : 2021.01.12
  • Published : 2021.11.30

Abstract

The broadband noise can be dominant or important for total characteristics for marine propeller noise representing the minimum base of self-noise. Accurate prediction of such noise is crucial for survivability of underwater military vessels. While the FW-H Formulation 1B can be used to predict broadband trailing edge noise, the method required experiment measurements of surface pressure correlations, showing its limitations in generality. Therefore, in this study, the methods are developed to utilize wall pressure spectrum models to overcome those limitations. Chase model is adopted to represent surface pressure along with the developed formulations to reproduce pressure statistics. Newly developed method is validated with the experiments of airfoils at different velocities. Thereafter, with its feasibility and generality, the procedure incorporating computational fluid dynamics is established and performed for a propeller behind submarine hull. The results are compared with the experiments conducted at Large Cavitation Tunnel, thus showing its usability and robustness.

Keywords

Acknowledgement

This research was funded by the Future Submarine Low Noise Propeller Specialized Laboratory, Korea Research Institute of Ships and Ocean Engineering, South Korea. It was further supported by the Research Institute of Marine Systems Engineering and Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2019R1F1A1062914). Also, the Institute of Engineering Research at Seoul National University provided research facilities for this work.

References

  1. Amiet, R.K., 1975. Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41, 407-420. https://doi.org/10.1016/S0022-460X(75)80105-2
  2. Amiet, R.K., 1976. Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47, 387-393. https://doi.org/10.1016/0022-460X(76)90948-2
  3. Barbarino, M., Casalino, D., 2012. Hybrid analytical/numerical prediction of propeller broadband noise in the time domain. Int. J. Aeroacoustics 11, 157-175. https://doi.org/10.1260/1475-472X.11.2.157
  4. Brooks, T.F., Hodgson, T.H., 1981. Trailing edge noise prediction from measured surface pressures. J. Sound Vib. 78, 69-117. https://doi.org/10.1016/S0022-460X(81)80158-7
  5. Byeon, C., Kim, J., Park, I., Seol, H., 2018. Resistance and self-propulsion simulations for the DARPA Suboff submarine by using RANS method. J. Comput. Fluids Eng. 23, 36-46. https://doi.org/10.6112/kscfe.2018.23.3.036
  6. Casper, J., Farassat, F., 2004. Broadband trailing edge noise predictions in the time domain. J. Sound Vib. 271, 159-176. https://doi.org/10.1016/S0022-460X(03)00367-5
  7. Chase, D., 1987. The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112, 125-147. https://doi.org/10.1016/S0022-460X(87)80098-6
  8. Chase, D.M., 1980. Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70, 29-67. https://doi.org/10.1016/0022-460X(80)90553-2
  9. Choi, J., Seol, H., Park, I., Lee, S., 2019. Study on noise prediction of non-cavitating underwater propeller with hull-appendages effect. The Journal of the Acoustical Society of Korea 38, 247-255. https://doi.org/10.7776/ASK.2019.38.3.247
  10. Choi, W.S., Choi, Y., Hong, S.Y., Song, J.H., Kwon, H.W., Jung, C.M., 2016. Turbulence-induced noise of a submerged cylinder using a permeable fw-h method. International Journal of Naval Architecture and Ocean Engineering 8, 235-242. https://doi.org/10.1016/j.ijnaoe.2016.03.002
  11. Choi, Y.S., Choi, W.S., Hong, S.Y., Song, J.H., Kwon, H.W., Seol, H.S., Jung, C.M., 2017. Development of formulation q1as method for quadrupole noise prediction around a submerged cylinder. International Journal of Naval Architecture and Ocean Engineering 9, 484-491. https://doi.org/10.1016/j.ijnaoe.2017.02.002
  12. Ciappi, E., Magionesi, F., Rosa], S.D., Franco, F., 2009. Hydrodynamic and hydroelastic analyses of a plate excited by the turbulent boundary layer. J. Fluid Struct. 25, 321-342. https://doi.org/10.1016/j.jfluidstructs.2008.04.006
  13. Corcos, G.M., 1964. The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18, 353-378. https://doi.org/10.1017/S002211206400026X
  14. Farassat, F., Succi, G.P., 1982. The prediction of helicopter rotor discrete frequency noise, 1982. In: American Helicopter Society, Annual Forum, 38th, Anaheim, CA, May 4-7, 1982, Proceedings.(A82-40505 20-01). American Helicopter Society, Washington, DC, pp. 497-507, pp. 497-507.
  15. Goody, M., 2004. Empirical spectral model of surface pressure fluctuations. AIAA J. 42, 1788-1794. https://doi.org/10.2514/1.9433
  16. Gorji, M., Ghassemi, H., Mohamadi, J., 2018. Calculation of sound pressure level of marine propeller in low frequency. J. Low Freq. Noise Vib. Act. Contr. 37, 60-73. https://doi.org/10.1177/1461348418757884
  17. Gorji, M., Ghassemi, H., Mohamadi, J., 2019. Effect of rake and skew on the hydrodynamic characteristics and noise level of the marine propeller. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43, 75-85.
  18. Groves, N.C., Huang, T.T., Chang, M.S., 1989. Geometric Characteristics of DARPA Suboff Models:(DTRC Model Nos. 5470 and 5471. David Taylor Research Center.
  19. Hinze, J.O., 1975. Turbulence.
  20. Howe, M.S., 1978. A review of the theory of trailing edge noise. J. Sound Vib. 61, 437-465. https://doi.org/10.1016/0022-460X(78)90391-7
  21. Hwang, Y., Bonness, W.K., Hambric, S.A., 2009. Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319, 199-217. https://doi.org/10.1016/j.jsv.2008.06.002
  22. Ianniello, S., De Bernardis, E., 2015. Farassat's formulations in marine propeller hydroacoustics. Int. J. Aeroacoustics 14, 87-103. https://doi.org/10.1260/1475-472X.14.1-2.87
  23. Ianniello, S., Muscari, R., Di Mascio, A., 2013. Ship underwater noise assessment by the acoustic analogy. part i: nonlinear analysis of a marine propeller in a uniform flow. J. Mar. Sci. Technol. 18, 547-570. https://doi.org/10.1007/s00773-013-0227-0
  24. Kinns, R., Peake, N., Kessissoglou, N., 2015. Challenges in the Prediction of Underwater Noise Due to Propellers. Acoust. 2015 Hunt (Val.).
  25. Klabes, A., Callsen, S., Herr, M., Appel, C., 2017. Fuselage excitation during cruise flight conditions: from flight test to numerical prediction. In: International Conference on Flow Induced Noise and Vibration Issues and Aspects. Springer, pp. 309-324.
  26. Lee, S., 2018. Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows. AIAA J. 56, 1818-1829. https://doi.org/10.2514/1.J056528
  27. Lighthill, M.J., 1952. On sound generated aerodynamically I. General theory. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 211, 564-587.
  28. Liu, Y., Dowling, A.P., 2007. Assessment of the contribution of surface roughness to airframe noise. AIAA J. 45, 855-869. https://doi.org/10.2514/1.25217
  29. Malgoezar, A.M., Vieira, A., Snellen, M., Simons, D.G., Veldhuis, L.L., 2019. Experimental characterization of noise radiation from a ducted propeller of an unmanned aerial vehicle. Int. J. Aeroacoustics 18, 372-391. https://doi.org/10.1177/1475472x19852952
  30. Moreau, S., Roger, M., 2009. Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part II: Application. J. Sound Vib. 323, 397-425. https://doi.org/10.1016/j.jsv.2008.11.051
  31. OpenFOAMWiki. Blasius flat-plate flow benchmark. https://openfoamwiki.net/index.php/Blasius_Flat-Plate_Flow_Benchmark.
  32. Ozden, M.C., Gurkan, A.Y., Ozden, Y.A., Canyurt, T.G., Korkut, E., 2016. Underwater radiated noise prediction for a submarine propeller in different flow conditions. Ocean Eng. 126, 488-500. https://doi.org/10.1016/j.oceaneng.2016.06.012
  33. Parchen, R., 2000. Noise production of ships propellers and waterjet installations at non-cavitating conditions. Proc. 34th WEGEMT Sch. "Developments Des. propulsors Propuls. Syst. 7, 1-14.
  34. Park, I., Kim, J., Suh, S., Seol, H., 2019. Numerical study on the resistance and self-propulsion of the suboff submarine model in the cavitation tunnel. Journal of Computational Fluids Engineering 24, 50-58. https://doi.org/10.6112/kscfe.2019.24.3.050
  35. Rozenberg, Y., Robert, G., Moreau, S., 2012. Wall-pressure spectral model including the adverse pressure gradient effects. AIAA J. 50, 2168-2179. https://doi.org/10.2514/1.J051500
  36. Sanjose, M., Moreau, S., 2018. Fast and accurate analytical modeling of broadband noise for a low-speed fan. J. Acoust. Soc. Am. 143, 3103-3113. https://doi.org/10.1121/1.5038265
  37. Schlinker, R.H., Amiet, R.K., 1981. Helicopter Rotor Trailing Edge Noise. NACA Rep. NASA-CR-3470.
  38. Seol, H., Kim, S.Y., 2018. Study on the analysis of model propeller tip vortex cavitation inception. J. Acoust. Soc. Korea 37, 387-395. https://doi.org/10.7776/ASK.2018.37.6.387
  39. Seol, H., Suh, J.C., Lee, S., 2005. Development of hybrid method for the prediction of underwater propeller noise. J. Sound Vib. 288, 345-360. https://doi.org/10.1016/j.jsv.2005.01.015
  40. Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252-263. https://doi.org/10.1016/S0142-727X(00)00007-2
  41. Tian, Y., Cotte, B., 2016. Wind turbine noise modeling based on Amiet's theory: effects of wind shear and atmospheric turbulence. Acta Acust. united with Acust. 102, 626-639. https://doi.org/10.3813/AAA.918979
  42. Wasala, S.H., Storey, R.C., Norris, S.E., Cater, J.E., 2015. Aeroacoustic noise prediction for wind turbines using large eddy simulation. J. Wind Eng. Ind. Aerod. 145, 17-29. https://doi.org/10.1016/j.jweia.2015.05.011
  43. Williams, J., Hawkings, D., 1969. Sound generation by turbulence and surfaces in arbitrary motion. Roy Soc London-Philosophical Trans Ser A 264, 321-342. https://doi.org/10.1098/rsta.1969.0031
  44. Williams, J.E., Hall, L.H., 1970. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40, 657-670. https://doi.org/10.1017/S0022112070000368
  45. Willmarth, W.W., Roos, F.W., 1965. Resolution and structure of the wall pressure field beneath a turbulent boundary layer. J. Fluid Mech. 22, 81-94. https://doi.org/10.1017/S0022112065000599
  46. Yu, J., Joshi, M., 1979. On sound radiation from the trailing edge of an isolated airfoil in a uniform flow. In: 5th Aeroacoustics Conf. AIAA. American Institute of Aeronautics and Astronautics (AIAA), p. 603.