과제정보
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B04035231).
참고문헌
- Cho, I.H., Kim, M.H., 2008. Wave absorbing system using inclined perforated plates. J. Fluid Mech. 608, 1-20. https://doi.org/10.1017/S0022112008001845
- Cho, I.H., Choi, J.S., Kim, M.H., 2017. Sloshing reduction in a swaying rectangular tank by a horizontal porous baffle. Ocean. Eng. 138, 23-34. https://doi.org/10.1016/j.oceaneng.2017.04.005
- Cho, I.H., Kim, M.H., 2016. Effect of dual vertical porous baffles on sloshing reduction in a swaying crossmark rectangular tank. Ocean. Eng. 126, 364-373. https://doi.org/10.1016/j.oceaneng.2016.09.004
- Cho, I.H., Kim, M.H., 2020. Effect of a bottom-hinged, top-tensioned porous membrane baffle on the sloshing reduction in a rectangular tank. Appl. Ocean Res. 104, 1-13.
- Chwang, A.T., Wu, J.H., 1994. Wave scattering by submerged porous disk. J. Eng. Mech. 120 (12), 2575-2587. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2575)
- Crowley, S., Porter, R., 2012a. An analysis of screen arrangements for a tuned liquid damper. J. Fluid Struct. 34, 291-309. https://doi.org/10.1016/j.jfluidstructs.2012.06.001
- Crowley, S., Porter, R., 2012b. The effect of slatted screens on waves. J. Eng. Math. 76 (1), 33-57. https://doi.org/10.1007/s10665-011-9529-6
- Evans, D.V., Peter, M.A., 2011. Asymptotic reflection of linear water waves by submerged horizontal porous plates. J. Eng. Math. 69, 135-154. https://doi.org/10.1007/s10665-009-9355-2
- Fang, Z., Xiao, L., Peng, T., 2017. Generalized analytical solution to wave interaction with submerged multi-layer horizontal porous plate breakwaters. J. Eng. Math. 105, 117-135. https://doi.org/10.1007/s10665-016-9886-2
- George, A., Cho, I.H., 2020. Anti-sloshing effects of a vertical porous baffle in a rolling rectangular tank. Ocean. Eng. 214, 1-15.
- Goudarzi, M.A., Sabbagh-Yazdi, S.R., 2012. Analytical and experimental evaluation on the effectiveness of upper mounted baffles with respect to commonly used baffles. Ocean. Eng. 42, 205-217. https://doi.org/10.1016/j.oceaneng.2011.12.005
- Ibrahim, R.A., 2005. Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press.
- Isaacson, M., Premasiri, S., 2001. Hydrodynamic damping due to baffles in a rectangular tank. Can. J. Civ. Eng. 28 (4), 608-616. https://doi.org/10.1139/cjce-28-4-608
- Jin, H., Liu, Y., Li, H.J., 2014. Experimental study on sloshing in a tank with an inner horizontal perforated plate. Ocean. Eng. 82, 75-84. https://doi.org/10.1016/j.oceaneng.2014.02.024
- Jin, H., Liu, Y., Song, R., Liu, Y., 2020. Analytical study on the effect of a horizontal perforated plate on sloshing motion in a rectangular tank. J. Offshore Mech. Arctic Eng. 142 (4).
- Kim, Y., 2001. Numerical simulation of sloshing flows with impact load. Appl. Ocean Res. 23 (1), 53-62. https://doi.org/10.1016/S0141-1187(00)00021-3
- Liu, Y., Li, H.J., Li, Y.C., 2012. A new analytical solution for wave scattering by a submerged horizontal porous plate with finite thickness. Ocean. Eng. 42, 83-92. https://doi.org/10.1016/j.oceaneng.2012.01.001
- Liu, Y., Li, Y., 2011. An alternative analytical solution for water-wave motion over a submerged horizontal porous plate. J. Eng. Math. 69 (4), 385-400. https://doi.org/10.1007/s10665-010-9406-8
- McIver, M., 1985. Diffraction of water waves by a moored, horizontal, flat plate. J. Eng. Math. 19, 297-319. https://doi.org/10.1007/BF00042875
- Molin, B., 2011. Hydrodynamic modeling of perforated structures. Appl. Ocean Res. 33 (1), 1-11. https://doi.org/10.1016/j.apor.2010.11.003
- Molin, B., Remy, F., 2013. Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen. J. Fluid Struct. 43, 463-480. https://doi.org/10.1016/j.jfluidstructs.2013.10.001
- Molin, B., Remy, F., 2015. Inertia effects in TLD sloshing with perforated screens. J. Fluid Struct. 59, 165-177. https://doi.org/10.1016/j.jfluidstructs.2015.09.004
- Patarapanich, M., 1984. Forces and moment on a horizontal plate due to wave scattering. Coast. Eng. 8 (3), 279-301. https://doi.org/10.1016/0378-3839(84)90006-1
- Patarapanich, M., Cheong, H.F., 1989. Reflection and transmission characteristics of regular and random waves from a submerged horizontal plate. Coast. Eng. 13 (2), 161-182. https://doi.org/10.1016/0378-3839(89)90022-7
- Poguluri, S.K., Cho, I.H., 2019. Liquid sloshing in a rectangular tank with vertical slotted porous screen: based on analytical, numerical, and experimental approach. Ocean. Eng. 189.
- Tait, M.J., 2008. Modelling and preliminary design of a structure-TLD system. Eng. Struct. 30 (10), 2644-2655. https://doi.org/10.1016/j.engstruct.2008.02.017
- Unal, U.O., Bilici, G., Akyildiz, H., 2019. Liquid sloshing in a two-dimensional rectangular tank: a numerical investigation with a T-shaped baffle. Ocean. Eng. 187.
- Yip, T.L., Chwang, A.T., 1998. Water wave control by submerged pitching porous. J. Eng. Mech. 124 (4), 428-434. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(428)
- Yu, X.P., Chwang, A.T., 1994. Wave motion through porous structures. J. Eng. Mech. 120 (5), 989-1008. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(989)
- Zhao, Y., Liu, Y., Li, H.-J., Chan, A.-T., 2020. Iterative dual BEM solution for water wave scattering by breakwaters having perforated thin plates. Eng. Anal. Bound. Elem. 120, 95-106. https://doi.org/10.1016/j.enganabound.2020.08.008