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a b s t r a c t

This paper presents a novel control scheme for the three-dimensional (3D) path following of under-
actuated Autonomous Underwater Vehicle (AUVs) subject to unknown internal and external distur-
bances, in term of the time scale decomposition method. As illustration, two-time scale motions are first
artificially forced into the closed-loop control system, by appropriately selecting the control gain of the
integrator. Using the singular perturbation theory, the integrator is considered as a fast dynamical control
law that designed to shape the space configuration of fast variable. And then the stabilizing controller is
designed in the reduced model independently, based on the time scale decomposition method, leading
to a relatively simple control law. The stability of the resultant closed-loop system is demonstrated by
constructing a composite Lyapunov function. Finally, simulation results are provided to prove the efficacy
of the proposed controller for path following of underactuated AUVs under internal and external
disturbances.
© 2021 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

AUV plays an important role in marine activities such as ocean
sampling, resource exploration and exploitation, and rescue and
search, and so on, since it provides a safe, efficient, and economical
way without placing human lives at risk. To fulfill these deep
oceanic missions, effective motion control is essential. In view of
the different application scenarios, several fundamental motion
control problems, such as trajectory tracking (Xu et al., 2015;
Elmokadem et al., 2016), formation tracking (Qi, 2014; Park, 2015)
and path following (Lapierre et al., 2008; Peymani and Fossen,
2015; Peng et al., 2018a, 2018b), are focused. This article con-
siders the path following control of underactuated AUVs that finds
many applications in reality, such as oceanographic survey, target
carpet searching and pipeline inspection.

In practical cases, there are many challenges in the motion
control of an underactuated AUV, such as complex dynamic
behavior, parameter variations, model errors and external distur-
bances caused by sea currents and waves. All these make the mo-
tion control of an underactuated AUV attractive to researchers.
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During the past two decades, a wide range of different nonlinear
control techniques have been applied to study this issue and many
results are reported. On account of the ability to improve its per-
formance in case of little or no information of the bounds on un-
certainties, the adaptive control represents a mainstream method
for the motion control of AUVs subject to system uncertainties. In
Do et al. (2004), a nonlinear robust adaptive control strategy is
developed for path following of underactuated AUVs, based on
Lyapunov's direct method, backstepping and parameter projection
techniques. In Aguiar and Hespanha (2007), an adaptive switching
control scheme is designed for 3D trajectory tracking and path
following of underactuated AUVs. In Lapierre and Jouvencel (2008),
a hybrid adaptation scheme is proposed to enhance the robustness
against the parametric uncertainty. Due to the insensitivity to
model uncertainties and unknown disturbances, the Sliding Mode
Control (SMC) becomes another mainstream method for the con-
trol of AUVs. In Elmokadem et al. (2016), a sliding mode control
scheme is proposed for the lateral trajectory tracking of an under-
actuated AUV. In Xu et al. (2015), a trajectory tracking controller is
obtained by the combining the backstepping technique and adap-
tive dynamical SMC. To eliminate the main drawback associated
with the SMC, known as the chattering effect due to the discon-
tinuous control signal, in Salgado-Jimenez et al. (2004) and Joe et al.
(2014), two different higher order sliding mode control schemes
are introduced.
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Since Fuzzy Logic Systems (FLS) and Neural Networks (NN) are
capable to approximate nonlinearities, as a result, provide
improved robustness properties under model uncertainties and
unknown disturbances, they have been widely used in the control
system design. In Zhang et al. (2009), an adaptive output feedback
controller is designed for the 3D trajectory tracking of AUVs, based
on Dynamic Recurrent Fuzzy Neural Network (DRFNN). In Xiang
et al. (2017), a robust fuzzy control law is proposed for 3D path
following of AUVs. In Peng et al. (2019), anti-disturbance con-
strained control of AUVs subject to uncertainties and constraints is
developed, using NN approach and observer-based technique. As
illustration, all these nonlinear control techniques mentioned
above have the advantages on addressing the technical challenges
of model uncertainties and unknown external disturbances. How-
ever, they usually yield relatively complicated controllers which
may be prohibitive in the real world.

As a simple but effective tool for dealing with the unknown
disturbances of complex system, the observer-based control tech-
nique has also drawn obvious attentions of researchers for the
control system design given unknown external and internal dis-
turbances. In Fernandes et al. (2015), a high-gain observer-based
output feedback control law is employed for Remotely Operated
Vehicles (ROVs), considering the model errors, measurement er-
rors, and unknown external environmental disturbances. In Peng
et al. (2018a and 2018b), two controllers with different focuses
are developed for path-following of underactuated AUVs based on
Extended State Observer (ESO) and NN.

Theory of singular perturbation and time scale represents a
mathematical realization of intuitive approach to simplifiedmodels
obtained via order reduction (Kokotovic et al., 1999; Khalil, 2002).
Compared to most classical control methods, the distinct feature of
singular perturbation control is that it allows a time scale decom-
position of a dynamic system into lower order subsystems with
different time scales, in which the control laws can be designed
independently and thus being easily obtained, leading to a reduc-
tion of control complexity. Such characteristic is deeply appealing
to researchers and control engineers. It has been widely applied to
the design and analysis of motion control of marine vehicles. In
Canudas and Olguin (2000), a robust nonlinear feedback control
law is developed for ROVs equipped with a robot manipulator, by
utilizing the difference between the two-time operation scale be-
tween the vehicle and the manipulator. In Bhatta and Leonard
(2008), several Lyapunov-based controllers are proposed for
wing-level flight of underwater gliders with different configura-
tions. Following that, Zhang and Tan (2015) design a nonlinear,
passivity-based controller and an observer for a gliding robotic fish,
based on the existing reduced subsystem as in Bhatta and Leonard
(2008). In Ren et al. (2014) and Yi et al. (2016), two distinct two-
time scale singular perturbation control laws are employed for
Rudder Roll Stabilization (RRS) and path following of marine sur-
face vessels, respectively. Prestero (2001) proposes a simple inner-
and-outer loop PD controller for the pitch-depth diving motion of
an underactuated AUV, by taking advantages of the time scale
separation between the translational dynamics and orientation
dynamics. However, no analytical results are provided. With this
problem, recently, Lei (2020) provides a singular perturbation
analysis for the dive control of underactuated AUVs.

In this paper, a method is presented for the path following
control of underactuated AUVs subject to model uncertainties and
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unknown environmental disturbances. To provide an easy-to-
implement controller, we resort to the integral control technique.
The controller is divided into two parts: integrator and stabilizing
controller. By appropriately selecting the control gain, two-time
scale motions are artificially forced into the extended closed-loop
control system, thus, the properties of system is analyzed, in term
of the theory of singular perturbation and time scale. In that case,
the integrator is naturally considered as a fast dynamical control
law, which is designed to shape a desired space configuration of fast
variable, so as to obtain an ideal reduced model without system
uncertainties. The design of stabilizing controller thereby becomes
a model-based control problem. To further reduce the control
complexity, a forced singular perturbation method is utilized, with
a realistic assumption: the translational and angular velocities are
much faster than the kinematic tracking errors, at the same time,
the path angle tracking errors are faster than the cross-track errors.
On the basis of that, the control law is obtained by designing
respective control schemes for each subsystem that given by time
scale decomposition. And the stability analysis of the reduced
model is performed by constructing a composite Lyapunov func-
tion. Meanwhile, the mathematical bounds on the control gains are
also provided. Finally, its control performance is evaluated through
computer simulations. They show that the proposed control
scheme is robust in the presence of unknown internal and external
disturbances, and a good path following performance is
guaranteed.

The remainder of the paper is organized as follows. Section 2
states the problem formulation. Section 3 and Section 4 present
the design and analysis of path following controller via singular
perturbation technique. Section 5 presents the simulation results to
illustrate the control performance. Section 6 concludes this paper.
2. Preliminaries

The kinematic and dynamic models of an underactuated AUV is
presented, and a formulation of the 3D path following control
problem is stated.
2.1. Model of an underactuated AUV

To study the motion of an underactuated AUV, we first define
two reference frames: {I} and {B}. As illustrated in Fig. 1, the inertial
frame {I} is defined by an orthonormal triad fi1;i2;i3g, where i1 and
i2 lie along the horizontal plane, perpendicular to gravity. And i3
lies in the direction of the gravity vector and is positive in the
downward direction. The origin of body-fixed frame {B} locates at
the center of buoyancy (CB), where the b1 points to the fore along
the longitudinal axis of an AUV, the b2 points to the starboard of an
AUV, and the b3 is determined by the right-hand rule. Following
that, we define some symbols as in Table 1.

In the present study, we ignore the dynamics of roll and surge,
with assumption of that f ¼ 0 and the surge velocity u is fixed. This
is realistic when the vehicle has an effective forward speed
controller and is equipped with independent roll actuators
(Rezazadegan et al., 2015). Accordingly, the kinematic model of an
AUV can be expressed as



Fig. 1. (a) Vehicle model and reference frames; (b) kinematic path following errors.

Table 1
Definition of symbols.

Symbol Description

ðx;y; zÞ vehicle's positions with respect to the frame {I}
ðu; v;wÞ vehicle's translational velocities (surge, sway and heave, respectively) expressed in the frame {B}
ðf;q;jÞ vehicle's attitude (the roll, pitch and yaw angles, respectively)
ðp;q; rÞ vehicle's angular velocities about each of the axis of the frame {B}
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8>>>><>>>>:
_x ¼ u cosðjÞcosðqÞ � v sinðjÞ þw cosðjÞsinðqÞ
_y ¼ u sinðjÞcosðqÞ þ v cosðjÞ þw sinðjÞsinðqÞ
_z ¼ �u sinðqÞ þw cosðqÞ
_q ¼ q
_j ¼ r=cosðqÞ

(1)

and the simplified kinetic model can be written as

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

_v ¼ 1
m22

ð �m11ur � d22vÞ

_w ¼ 1
m33

ðm11uq� d33wÞ

_q ¼ 1
m55

��mgzg sinðqÞ þ ðm33 �m11Þuw� d55qþ tq þ dq
�

_r ¼ 1
m66

ððm11 �m22Þuv� d66r þ tr þ drÞ

(2)

where, m11 ¼ m� X _u, m22 ¼ m� Y _v, m33 ¼ m� Z _w, m55 ¼ Iyy �
M _q, m66 ¼ Izz � N _r，d22 ¼ � Yv � Yvjvj, d33 ¼ � Zw � Zwjwj, d55 ¼
�Mq �Mqjqj, d66 ¼ �Nr �Nrjrj. Here,m and Ið$Þ represent vehicle's
mass and moment of inertia. Xð$Þ, Yð$Þ, Zð$Þ, Mð$Þ and Nð$Þ denote
vehicle's hydrodynamic parameters, including the damping and
added mass in surge, sway, heave, pitch and heading, respectively.
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dq and dr account for the unknown internal and external
disturbances.

2.2. Kinematic path following error dynamics

In this subsection, the kinematic error dynamics for path
following is derived. The 3D case is divided into two parts:
horizontal-plane path following and depth tracking, contributing to
providing a simpler approach. As illustrated in Fig. 1(b), eh repre-
sents the cross-track error in the horizontal plane, while ev repre-
sents the depth tracking error. Let e denote the total cross-track
error, it is clear to see that e! ¼ eh

�!þ ev
!, kek � kehk þ kevk, and e/

0 in case of eh/0 and ev/0. Therefore, our goal is converted into
stabilize ev and eh to zero, independently.

2.2.1. Tracking error dynamics in the diving direction
The depth error is

ev ¼ z� zp (3)

The time-derivative of ev gives

_ev ¼ �u sinðqÞ þw cosðqÞ � _zp ¼ �U0 sinðq� aÞ � _zp

¼ �U1 sinðqe � aÞ (4)

where U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þw2

p
>0, U1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þw2 þ ½ _zp=cosðq� aÞ�2

q
>0,

a ¼ atan2ðw; uÞ. qp is recognized as the designed desired pitch
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angle, in order to track the depth along the reference path, and
given by

qp¼ arctan
� � _zp
U0 cosðq� aÞ

�
(5)

In this case, qe ¼ q� qp represents the pitch angle tracking error.
And the pitching error dynamics is

_qe ¼ q� qp (6)

Here, qp ¼ _qp is a desired angular velocity for the point ðxp; yp; zpÞ
along the reference path.
2.2.2. Path following error dynamics in the horizontal plane
Referring to (Lekkas and Fossen, 2013), the cross-track eh can be

taken as

eh¼ � �
x� xp

�
sin

�
jp

�þ �
y� yp

	
cos

�
jp

�
(7)

where jp ¼ atan2ð _yp; _xpÞ; ð _xp s0Þ is the path-tangential angle for
point ðxp; ypÞ along the path projected on the horizontal plane. The
derivative _eh is

_eh ¼ � _xsin
�
jp

�þ _ycos
�
jp

�
¼ �½ucosðjÞcosðqÞ � vsinðjÞ þwcosðjÞsinðqÞ �sin�jp

�
þ½usinðjÞcosðqÞ þ vcosðjÞ þwsinðjÞsinðqÞ �cos�jp

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þw2

q
cosðq� aÞsinðjeÞ þ v cosðjeÞ

¼ U2 sinðje þ bnÞ

(8)

Here U2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2
0cos 2ðq� aÞ þ v2

q
>0 and bn ¼ atan2ðv;U0

cosðq�aÞÞ respectively denote the nominal moving velocity and
sideslip angle with respect to the horizontal path following motion.
je ¼ j� jp is the yaw angle tracking error. Following that, the
yawing error dynamics is

_je ¼ r=cosðqÞ � rp (9)

where, rp ¼ _jp are considered as the desired angular velocities for
the point ðxp; ypÞ along the reference path projected on the hori-
zontal plane.
2.3. Control system and control objective

As illustration above, the mathematical model for 6-DOFs path
following control of an underactuated AUV is written as
8>>>><>>>>:
tq2 ¼ 1

lq



1

m55

��mgzg sinðqÞ þ ðm33 �m11Þuw� d55qþ tq1
�
dt �

tr2 ¼ 1
lr


 ðtn
t0

1
m66

½ðm11 �m22Þuv� d66r þ tr1�dt � rðtÞjtnt0
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_ev ¼ �U1 sinðqe � aÞ
_eh ¼ U2 sinðje þ bnÞ
_qe ¼ q� qp

_je ¼
1

cosðqÞ r � rp

_v ¼ 1
m22

ð �m11ur � d22vÞ

_w ¼ 1
m33

ðm11uq� d33wÞ

_q ¼ 1
m55

��mgzg sinðqÞ þ ðm33 �m11Þuw� d55qþ tq þ dq
�

_r ¼ 1
m66

ððm11 �m22Þuv� d66r þ tr þ drÞ

(10)

The control goal herein is to design a control law for tq and tr in
(10) to stabilize the tracking errors ev and eh, so as to force an
underactuated AUV to follow a prescribed path. It assumes that all
the states are measurable, except for the acceleration information.

3. Integral controller

In this section, we first consider the problem of control system
design given unknown disturbances. To this end, an integral control
law is discussed. The overall design and analysis is as follows.

3.1. Control design

In order to reach the objective of developing a nonlinear
controller that should be easy to implement in reality, a simple
integral control scheme is considered.8>>>>>>>>><>>>>>>>>>:

tq¼tq1þtq2

tr¼tr1þtr2

lq _tq2¼
1

m55

��mgzg sinðqÞþðm33�m11Þuw�d55qþtq1
�� _q

lr _tr2¼
1

m66
ððm11�m22Þuv�d66rþtr1Þ� _r

(11)

where, lq and lr are small positive parameters and satisfies
0< lð$Þ≪1. Note that the design parameters lq and lrshould be
chosen properly according to the physical limitations on the vehi-
cle's control inputs. tq1 and tr1 are stabilizing controller, while tq2
and tr2 are integral controller that can be written as
qðtÞjtnt0



(12)
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and thereby independent of vehicle's acceleration information. It is
therefore achievable in reality.

Using (11), the mathematical model for path following control is
put into an extended-state model as follow.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_ev¼�U1 sinðqe�aÞ
_eh¼U2 sinðjeþbnÞ
_qe¼q�qp

_je¼
1

cosðqÞr�rp

_v¼ 1
m22

ð�m11ur�d22vÞ

_w¼ 1
m33

ðm11uq�d33wÞ

_q¼ 1
m55

�ðm33�m11Þuw�d55qþmgzg sinqþtqþdq
�

_r¼ 1
m66

ððm11�m22Þuv�d66rþtrþdrÞ

lq _tq2¼
1

m55

�ðm33�m11Þuw�d55qþmgzg sinðqÞþtq1
�� _q

lr _tr2¼
1

m66
ððm11�m22Þuv�d66rþtr1Þ� _r

(13)

where, tq2 and tr2 denote extended states. It is clear to see that the
small parameters lq and lr force three (possibly) different time
scales into the above system (13): the slow time scale t, and three
fast time scales t=lq and t=lr . Following the method as in Bhatta
and Leonard (2008), we simply consider one fast subsystem that
contains all those three fast time scales, by defining a unified fast
time scale t=l, where l ¼maxflq;lrg. In that case, ev, eh, je, qe, v,w,
q and r represent slow variable, while tq2 and tr2 represent fast
variable. Prior to the time scale decomposition of system (13), we
define two operators ^ and ~, which yield the quasi-steady-state
and the boundary layer correction of a state variable, respectively.
For more detail about these definitions, one might refer to
Kokotovic et al. (1999).

Considering the fast time scale defined by tc ¼ t=l, system (13)
is decomposed into two subsystems of lower order, where the fast
model is
8>>><>>>:
d~tq2
dtc

¼ l

lq

�
1

m55

��mgzgsinðqÞþðm33�m11Þuw�d55qþtq1
�� _q

�
¼� l

lq

d~tr2
dtc

¼ l

lr

�
1

m66
ððm11�m22Þuv�d66rþtr1Þ� _r

�
¼� l

lr

1
m66

~tr2
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and slow model is8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_ev ¼ �U1 sinðqe � aÞ
_eh ¼ U2 sinðje þ bnÞ
_qe ¼ q� qp

_je ¼
1

cosðqÞ r � rp

_v ¼ 1
m22

ð �m11ur � d22vÞ

_w ¼ 1
m33

ðm11uq� d33wÞ

_q ¼ 1
m55

��mgzg sin qþ ðm33 �m11Þuw� d55qþ tq1
�

_r ¼ 1
m66

ððm11 �m22Þuv� d66r þ tr1Þ

(15)

Here, the quasi-steady-state equilibrium of fast model satisfies the
following degenerate equation8>>><>>>:

0 ¼ 1
m55

��mgzg sinðqÞ þ ðm33 �m11Þuw� d55qþ tq1
�� _q

0 ¼ 1
m66

ððm11 �m22Þuv� d66r þ tr1Þ � _r

(16)

thus, given by
btq2 ¼ �dqbtr2 ¼ �dr
(17)

Obviously, the space configuration of the fast model is defined
only by the unknown internal and external disturbances. It reveals
that the integrator can be considered as an ESO which is designed
to estimate the required compensation for the unknown distur-
bances. Also note, tq1 and tr1 can be designed in the reducedmodel
(15) independently.

Remark 1. A distinctive feature of the discussed control scheme
is that it allows for an application of the theory of singular
perturbation and time scale, providing a deep insight into the
properties of closed-loop system (13). Specifically, the integrator is
considered as a fast dynamical control law which is designed to
shape the desired space configuration of fast variable, so as to
obtain an ideal reduced model (15). And then the problem of
1
m55

~tq2

(14)
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control system design given unknown disturbances is reduced to a
problem of model-based control.
3.2. Stability analysis

According to Saberi and Khalil (1984), Kokotovic et al. (1999)
and Khalil (2002), once the dynamic system is decomposed into
two subsystems of lower order, the Lyapunov function candidate
for full system can be obtained by constructing a weight sum of the
Lyapunov function candidates of two subsystems. On the basis of
that, we observe if the asymptotic stability of fast model (14) and
slow model (15) is guaranteed, there must be a composite Lyapu-
nov function for proving the asymptotic stability of full order sys-
tem (13), due to the fact that the design parameters lq and lr can be
sufficiently small. To our knowledge, it is an easy task to prove the
asymptotic stability of fast model (14). The Proof is omitted for the
sake of brevity. The asymptotic stability analysis for slow model
(15) will be detailed in Section 4.
Fig. 2. Block diagram of the AUV dynamics for path-following motion.
4. Stabilizing controller

In this section, a control law for tq1 and tr1 is designed to sta-
bilize the dynamic model (15), assuming the fast variable has
reached its quasi-steady-state and evolve on its own manifold. For
simplicity, tq1 and tr1 are chosen as

tq1 ¼ tq þmgzg sinðqÞ � ðm33 �m11Þuw
tr1 ¼ tr � ðm11 �m22Þuv (18)

It results in8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_ev ¼ �U1 sinðqe � aÞ
_eh ¼ U2 sinðje þ bnÞ
_qe ¼ q� qp

_je ¼
1

cosðqÞ r � rp

_v ¼ 1
m22

ð �m11ur � d22vÞ

_w ¼ 1
m33

ðm11uq� d33wÞ

_q ¼ 1
m55

�� d55qþ tq
�

_r ¼ 1
m66

ð � d66r þ trÞ

(19)

followed by the objective to design a control law for tq and tr to
stabilize system (19).

In view of the complexity of model (19), it is still a challenging
task for control system design. To reduce the control complexity,
the theory of singular perturbation and time scale is used. However,
modeling a physical system in the singularly perturbed form may
not be easy, due to the fact that it is not always clear how to identify
the small singularly perturbed parameters. Following the approach
as in Shinar (1983) and Sheu et al. (1991), in this section, a forced
singular perturbation model is obtained, by artificial insertion of
the singularly perturbed parameters. On an initial inspection of
model (19), a three-time scale model is more suitable (see Fig. 2).
Specifically, we select r, q, w and v as fast variables; je and qe as
slow variables; ev and eh as ultra-slow variable. Accordingly, in term
of the singular perturbation technique, tq and tr can be expressed
as following form:
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tq ¼ tf1q þ tf2q þ ts2q (20)

tr ¼ tf1r þ tf2r þ ts2r (21)

where, the superscripts f1, f2, s2 denote the control laws for Layer-
1 fast subsystem, Layer-2 fast subsystem and Layer-2 slow subsys-
tem, respectively. For more detail about these subsystems, please
refer to the following time scale decomposition in section 4.1.

Recalling the time scale separation mentioned above, and using
Eqs. (20) and (21), the dynamic model (19) is put into

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

_ev ¼ �U1 sinðqe � aÞ
_eh ¼ U2 sinðje þ bnÞ

ε1
_qe ¼ m1ðq� qpÞ

ε1
_je ¼ m1

�
1

cosðqÞ r � rp

�

ε2ε1 _v ¼ m2
1

m22
ð �m11ur � d22vÞ

ε2ε1 _w ¼ m2
1

m33
ðm11uq� d33wÞ

ε2ε1 _q ¼ m2
1

m55

�
� d55qþ tf1q þ tf2q þ ts2q

	
ε2ε1 _r ¼ m2

1
m66

�
� d66r þ tf1r þ tf2r þ ts2r

	

(22)

Here, εi¼1;2 are artificial singularly perturbed parameters. m1 ¼ ε1

and m2 ¼ ε1ε2.
4.1. Time scale decomposition

This subsection presents the time scale decomposition of system
(22). For convenience, we rewrite the three-time scale singularly
perturbed system (22) in a compact form as follows:



Fig. 3. Three-time scale singular perturbation reduction.

Fig. 4. Control strategy for a three-time scale singularly perturbed system. A is an
initial state, B is a state lying on the manifold 0 ¼ hðx; y; zÞ, C is a state lying on the
manifold 0 ¼ gðx; y; zÞ, D is the desired origin of full system. In a geometric view, the
closed-loop system (25) are expected to converge to the desired origin along the
designed flow A/B/C/D with control inputs tf1q , tf2q , ts2q , tf1r , tf2r and ts2r .
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8<:
_x ¼ f ðx; y; zÞ
ε1 _y ¼ gðx; y; zÞ
ε2ε1 _z ¼ hðx; y; zÞ

(23)

Here, x ¼ ðev; ehÞ, y ¼ ðqe;jeÞ and z ¼ ðv;w; q; rÞ denote ultra-slow,
slow and fast state variables of the three-time scale singularly
perturbed system (22), respectively. f ð $Þ, gð $Þ and hð $Þ are
continuously differentiable functions of state variables x, y and z.

Fig. 3 has provided an intuitive description of singular pertur-
bation reduction. It is clear to see that the generic three-time scale
system (23) can be sequentially decomposed into two distinct two-
time scale models. The first two-time scale model, that is, Layer-1, is
obtained by considering the stretched time scale t2 ¼ t1 =ε2b
t =ðε1ε2Þ, where the Layer-1 fast subsystem, is defined by

d~z
dt2

¼ hðx; y; ~z þ Hðx; yÞÞ (24)

and the Layer-1 slow subsystem, is defined by.

_x ¼ f ðx; y;Hðx; yÞÞ
ε1 _y ¼ gðx; y;Hðx; yÞÞ (25)

Note that, x and y are treated as frozen variables during the fast
transient (24). Hðx; yÞ represents the quasi-steady-state of z, given
764
by setting ε2 ¼ 0, that is, 0 ¼ hðx; y; zÞ/bz ¼ Hðx; yÞ. Similarly, the
reduced order Layer-1 slow subsystem (25) can be treated again like
a two-time scale singular perturbation problem by considering the
stretched time scale t1 ¼ t=ε1, where the boundary-layer subsys-
tem, denoted by the Layer-2 fast subsystem, is defined by

d~y
dt1

¼ gðx; ~y þ GðxÞ;Hðx; ~y þ GðxÞÞÞ (26)

and where the reduced subsystem, denoted by the Layer-2 slow
subsystem, is defined by

_x ¼ f ðx;GðxÞ;Hðx;GðxÞÞÞ (27)

Also note, x is treated as a frozen variable during the fast tran-
sient (26). GðxÞ denotes the quasi-steady-state of y, obtained by
setting ε1 ¼ 0, that is, 0 ¼ gðx; y;Hðx; yÞ Þ/by ¼ GðxÞ, with
assumption of that z has reached its quasi-steady-state and evolve
on its own manifold.
4.2. Control design

The previous subsection has provided an intuitive description of
time scale decomposition of system (23). In this subsection, the
control laws will be designed in each subsystem separately. An
intuitive description of control strategy for the three-time scale
singularly perturbed system can be seen in Fig. 4.
4.2.1. Control law for the Layer-2 slow subsystem
Proposition 1: The Layer-2 slow subsystem (27) will be

asymptotically stable by selecting a virtual feedback control law
bqe ¼ k1ev þ abje ¼ �k2eh � bn
(28)

Here, k1 >0, k2 >0.
Proof. Using (28), the Layer-2 slow subsystem (27) is put into

_ev ¼ �U1 sinðk1evÞ
_eh ¼ U2 sinð�k2ehÞ (29)

Consider a Lyapunov function candidate

V2ðxÞ¼
1
2

�
e2v þ e2h

	
(34)

Derivative of V2ðxÞ along the trajectories of system (29) can be
taken as
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_V2ðxÞ¼
vV2ðxÞ
vx

f ðx;GðxÞ;Hðx;GðxÞÞÞ
¼ � evU1 sinðk1evÞþ ehU2 sinð�k2ehÞ

(35)

Since k1 >0, k2 >0, U1 >0 and U2 >0, we compute _V2ðxÞ � 0 and
_V2ðxÞ<0;cxs0 in case of jk1evj � p =2 and jk2ehj � p =2. Thereby,
the asymptotic stability of system (29) near the equilibrium point is
guaranteed.

To determine control laws ts2q and ts2r , we resort to the degen-
erate equation 0 ¼ gðx; y;Hðx; yÞ Þ. It can be seen that the following
control law will allow the control system to achieve the discussed
goal.8<: ts2q ¼

h
k3ðk1ev � qe þ aÞ þ qp

i
d55

ts2r ¼ �
k4ð � k2eh � je � bnÞ þ rp

�
d66 cosðqÞ

(36)

Here, k3 >0, k4 >0. Note that the choice of k1 and k2 determines
how fast the tracking errors converge to zero.

4.2.2. Control law for the Layer-2 fast subsystem
Proposition 2. The Layer-2 fast subsystem (26) will be asymp-

totically stable by selecting a simple control law8<: tf2q ¼ �k5d55~qe

tf2r ¼ �k6d66 cosðqÞ~je

(37)

where, k5 � 0 and k6 � 0.
Proof. Using (36) and (37), the Layer-2 fast subsystem (26) is

taken as8>>><>>>:
d~qe
dt1

¼ m1ð�k3 � k5Þ~qe

d~je
dt1

¼ m1ð�k4 � k6Þ~je

(38)

Consider a Lyapunov function candidate

W2ðx; ~yÞ ¼
1
2

�
~q
2
e þ ~j

2
e

	
(39)

We have

_W2ðx; ~yÞ ¼
vW2ðx; ~yÞ

v~y
1
m1

gðx; y;Hðx; yÞ Þ

¼ �ðk3 þ k5Þ~q
2
e � ðk4 þ k6Þ~j

2
e (40)

As k3 >0, k4 >0, k5 � 0 and k6 � 0, it is clear to see that
_W2ðx; ~yÞ � 0 and _W2ðx; ~yÞ<0; c~ys0. Therefore, system (38) is
asymptotically stable.

4.2.3. Control law for the Layer-1 fast subsystem
Similarly, the following proposition will guarantee the asymp-

totic stability of the Layer-1 fast subsystem (24).
Proposition 3. The Layer-1 fast subsystem (24) will be asymp-

totically stable by selecting8<: tf1q ¼ �k7~q� k8 ~wb� k7ðq� bqÞ � k8ðw� bwÞ
tf1r ¼ �k9~r � k10~vb� k9ðr � brÞ � k10ðv� bvÞ (41)

where, k7 � 0, k8 ¼ m11m55u=m33, k9 � 0 and k10 ¼ �
m11m66u=m22. The quasi-steady-state bv, bw, bq and are expressed as
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bv¼ �m11u
d22

�ðk6 þ k4Þð � k2eh �je � bnÞþ rp
�
cosðqÞ

bw¼m11u
d33

h
ðk5 þ k3Þðk1ev � qe þaÞþ qp

i
bq¼ðk5 þ k3Þðk1ev � qe þaÞ þ qp

br ¼ �ðk6 þ k4Þð � k2eh �je � bnÞþ rp
�
cosðqÞ

Proof. Substituting (36), (37) and (41) into (24) yields the
resultant Layer-1 fast subsystem8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

d~v
dt2

¼ m2
1

m22
ð �m11u~r � d22~vÞ

d ~w
dt2

¼ m2
1

m33
ðm11u~q� d33 ~wÞ

d~q
dt2

¼ m2
1

m55
ð � d55~q� k7~q� k8 ~wÞ

d~r
dt2

¼ m2
1

m66
ð � d66~r � k9~r � k10~vÞ

(42)

Consider a Lyapunov function candidate

W1ðx; y; ~zÞ ¼
1
2

�
~v2 þ ~w2 þ ~q2 þ ~r2

	
(43)

The derivative _W1ðx; y; ~zÞ is given by

_W1ðx; y; ~zÞ ¼
vW1ðx; y; ~zÞ

v~z
1
m2

hðx; y; zÞ

¼ � 1
m22

d22~v
2 � 1

m33
d33 ~w

2 � 1
m55

ðd55 þ k7Þ~q2

� 1
m66

ðd66 þ k9Þ~r2 (44)

It is obvious that _W1ðx; y; ~zÞ � 0 and _W1ðx; y; ~zÞ<0; c~zs0,
owing to k7 � 0, k9 � 0, m22 >0, m33 >0, m55 >0, m66 >0, d22 >0,
d33 >0, d55 >0 and d66 >0. So, considering the control input as in
(41), the origin of the Layer-1 fast subsystem (24) is an asymptot-
ically stable equilibrium point.
4.2.4. Overall control law
As illustration above, the feedback control law for system (14) is

tq1 ¼ �k7~q� k8 ~wþ d55bq þmgzgsinðqÞ � ðm33 �m11Þuw
tr1 ¼ �k9~r � k10~vþ d66br � ðm11 �m22Þuv

(45)

Recalling (11) and (12), the total feedback control law for system
(10) is given at the same time. We observe that the proposed
controller is a classical PID controller. This is an interesting
connection between the proposed singular perturbation controller
and the classical PID controller. On the basis of this observation, we
come to a conclusion that the theory of singular perturbation and
time scale may be a simple but effective method for PID control,
since it provides a deep insight into the system properties and leads
to a reduction of control complexity.
4.3. Stability analysis

In previous subsection, stability analysis of the reduced order
subsystems has been provided. However, it guarantees only the
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local stability of the equilibrium of the full dynamics (23). In this
subsection, we will construct a composite Lyapunov function
candidate for proving the asymptotic stability of dynamic model
(23), meanwhile provide mathematical expressions for the upper
bounds of those control gains.

In general, the derivative of a and bn is vanishingly small, it is

reasonable to suppose that _a ¼ 0 and _bn ¼ 0, which implies that a
and bn vary slowly relative to the other state variables. This
assumption is quite natural for most small AUVs that move slowly in
practical cases. On the basis of that, we rewrite system (23) as follow:
8>>>>>>><>>>>>>>:

_x¼f ðx;GðxÞ;Hðx;GðxÞÞÞþ½f ðx;y;Hðx;yÞÞ�f ðx;GðxÞ;Hðx;GðxÞÞÞ�þDF

_~y¼ 1
ε1
gðx;y;Hðx;yÞÞ�vGðxÞ

vx
_xþDG

_~z¼ 1
ε1ε2

hðx;y;zÞ�vHðx;yÞ
vðx;yÞ

"
_x

_y

# (46)
Here,

DF ¼ f ðx; y; ~z þ Hðx; yÞ Þ � f ðx; y;Hðx; yÞ Þ

DG ¼ 1
ε1

½gðx; y; ~z þ Hðx; yÞ Þ � gðx; y;Hðx; yÞ Þ �

According to the strategy for time scale decomposition illus-
trated in section 4.1, we consider a composite Lyapunov function
candidate

Vðx; ~y; ~zÞ¼ ð1�n1Þ½ð1�n2ÞV2ðxÞþn2W2ðx; ~yÞ� þ n1W1ðx; y; ~zÞ
(47)

Here, 0<ni¼1;2 <1.
Proposition 4. Vðx; ~y; ~zÞ is a Lyapunov function candidate for
_Vðx; ~y; ~zÞ ¼ð1� n1Þð1� n2Þ
vV2ðxÞ
vx

f ðx;GðxÞ;Hðx;GðxÞ Þ Þ þ ð1� n1Þ
n2
ε1

vW2ðx; ~yÞ
v~y

gðx; y;Hðx; yÞ Þ

þ ð1� n1Þð1� n2Þ
vV2ðxÞ
vx

½f ðx; y;Hðx; yÞ Þ � f ðx;GðxÞ;Hðx;GðxÞ Þ Þ �

þ ð1� n1Þn2
�
vW2ðx; ~yÞ

vx
� vW2ðx; ~yÞ

v~y
vGðxÞ
vx

�
f ðx; y;Hðx; yÞ Þ þ ð1� n1Þ



v½ð1� n2ÞV2ðxÞ þ n2W2ðx; ~yÞ �

vðx; ~yÞ
�
DF

DG

�

þ n1
ε2ε1

vW1ðx; y; ~zÞ
v~z

hðx; y; zÞ þ n1



vW1ðx; y; ~zÞ

vðx; yÞ � vW1ðx; y; ~zÞ
v~z

vHðx; yÞ
vðx; yÞ


�
_x
_y

�
(48)
proving the asymptotic stability of the origin of singularly per-
turbed system (23), if the following conditions hold:

(1) vV2ðxÞ
vx f ðx;GðxÞ;Hðx;GðxÞ Þ Þ � � a114

2
11ðx1Þ � a124

2
12ðx2Þ
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(2) vW2ðx;~yÞ
v~y

gðx; y;Hðx; yÞ Þ � � a214
2
21ð~y1Þ � a224

2
22ð~y2Þ

(3) vV2ðxÞ
vx ½f ðx; y;Hðx; yÞ Þ � f ðx;GðxÞ;Hðx;GðxÞ Þ Þ � � b11411ðx1Þ

421ð~y1Þ þ b21412ðx2Þ422ð~y2Þ
(4)

�
vW2ðx;~yÞ

vx � vW2ðx;~yÞ
v~y

vGðxÞ
vx

�
f ðx; y;Hðx; yÞ Þ � b12411ðx1Þ421ð~y1Þ

þb134
2
21ð~y1Þ þ b22412ðx2Þ422ð~y2Þ þ b234

2
22ð~y2Þ

(5) vW1ðx; y; ~zÞ
v~z

hðx; y; zÞ � �a21w
2
21ð~z2;~z3Þ � a22w

2
22ð~z1;~z4Þ

(6) v½ð1�n2ÞV2ðxÞþn2W2ðx;~yÞ �
vðx;~yÞ

�
DF
DG

�
� b11w11ðx1; ~y1Þw21ð~z2;~z3Þ
þb21w12ðx2; ~y2Þw22ð~z1;~z4Þ
(7)

�
vW1ðx;y;~zÞ

vðx;yÞ � vW1ðx;y;~zÞ
v~z

vHðx;yÞ
vðx;yÞ

��
_x
_y

�
� b12w11ðx1; ~y1Þw21

ð~z2;~z3Þ þ b13w
2
21ð~z2;~z3Þ þ b22w12ðx2; ~y2Þw22ð~z1;~z4Þ þ b23w

2
22

ð~z1;~z4Þ

Here, xð$Þ, ~yð$Þ and ~zð$Þ are the elements of vectors x, ~y and ~z,
respectively. w11ðx1; ~y1Þ ¼ ½411ðx1Þ;421ð~y1Þ�, w12ðx2; ~y2Þ ¼
½412ðx2Þ;422ð~y2Þ�. 4ijð $Þ and wijð $Þ are continuous scalar positive-
definite functions. að$Þ and að$Þ are positive constants. bð$Þ and bð$Þ
are nonnegative constants or matrices with nonnegative elements.

Proof. The derivation of these coefficients and functions is
outlined in Appendix. The derivative _Vðx; ~y; ~zÞ is given by
Following that, substituting assumptions (1)e(7) into (48) yields
an inequality



_Vðx; ~y; ~zÞ � � ð1� n1Þð1� n2Þ
h
a114

2
11ðx1Þ þ a124

2
12ðx2Þ

i
� ð1� n1Þ

n2
ε1

h
a214

2
21ð~y1Þ þ a224

2
22ð~y2Þ

i
þ ð1� n1Þð1� n2Þ½b11411ðx1Þ421ð~y1Þ þ b21412ðx2Þ422ð~y2Þ � þ ð1� n1Þn2

h
b12411ðx1Þ421ð~y1Þ þ b134

2
21ð~y1Þ

i
þ ð1� n1Þn2

h
b22412ðx2Þ422ð~y2Þ þ b234

2
22ð~y2Þ

i
þ ð1� n1Þfb11w11ðx1; ~y1Þw21ð~z2;~z3Þ þ b21w12ðx2; ~y2Þw22ð~z1;~z4Þ g

� n1
ε2ε1

h
a21w

2
21ð~z2;~z3Þ þ a22w

2
22ð~z1;~z4Þ

i
þ n1

h
b12w11ðx1; ~y1Þw21ð~z2;~z3Þ þ b13w

2
21ð~z2;~z3Þ

i
þ n1

h
b22w12ðx2; ~y2Þw22ð~z1;~z4Þ þ b23w

2
22ð~z1;~z4Þ

i
� �ð1� n1Þ

h
wT
11ðx1; ~y1ÞL1w11ðx1; ~y1Þ þ wT

12ðx2; ~y2ÞL2w12ðx2; ~y2Þ
i

þ ð1� n1Þfb11w11ðx1; ~y1Þw21ð~z2;~z3Þ þ b21w12ðx2; ~y2Þw22ð~z1;~z4Þ g �
n1
ε2ε1

h
a21w

2
21ð~z2;~z3Þ þ a22w

2
22ð~z1;~z4Þ

i
þ n1

h
b12w11ðx1; ~y1Þw21ð~z2;~z3Þ þ b13w

2
21ð~z2;~z3Þ

i
þ n1

h
b22w12ðx2; ~y2Þw22ð~z1;~z4Þ þ b23w

2
22ð~z1;~z4Þ

i
� �JT ðx1; ~y1;~z2;~z3ÞP1Jðx1; ~y1;~z2;~z3Þ � GT ðx2; ~y2;~z1;~z4ÞP2Gðx2; ~y2;~z1;~z4Þ

(49)
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where

Jðx1; ~y1;~z2;~z3Þ ¼
�
w11ðx1; ~y1Þ
w21ð~z2;~z3Þ

�
b

24 411ðx1Þ
421ð~y1Þ

w21ð~z2;~z3Þ

35

Gðx2; ~y2;~z1;~z4Þ ¼
�
w12ðx1; ~y1Þ
w22ð~z2;~z3Þ

�
b

24 412ðx2Þ
422ð~y2Þ

w22ð~z1;~z4Þ

35
and

L1 ¼
24 ð1� n2Þa11 �0:5½ð1� n2Þb11 þ n2b12�

�0:5½ð1� n2Þb11 þ n2b12� n2

�
a21
ε1

� b13

� 35

L2 ¼
24 ð1� n2Þa12 �0:5½ð1� n2Þb21 þ n2b22�

�0:5½ð1� n2Þb21 þ n2b22� n2

�
a22
ε1

� b23

� 35

P1 ¼

264 ð1� n1ÞL1 �0:5½ð1� n1Þb11 þ n1b12�T

�0:5½ð1� n1Þb11 þ n1b12� n1

�
a21
ε1ε2

� b13

�
375

P2 ¼

264 ð1� n1ÞL2 �0:5½ð1� n1Þb21 þ n1b22�T

�0:5½ð1� n1Þb21 þ n1b22� n1

�
a22
ε1ε2

� b23

�
375

It is clear to see that the derivative of Vðx; ~y; ~zÞ along the tra-
jectories of system (23) is negative definite, in case ofP1 andP2 are
both positive definite, namely, the following conditions hold:

jL1jd >0 (50)

jL2jd >0 (51)

jP1jd >0 (52)

jP2jd >0 (53)
767
Here, the operator j $ jd yields the determinant of a matrix. The
detailed calculation is omitted for the sake of brevity.

Therefore, the origin of the three-time scale singularly per-
turbed system (23) is an asymptotically stable equilibrium point for
control gains that satisfy the above conditions (50)e(53). In other
word, the control gains are restricted in a certain region D ¼n
kð$Þ

�����Li¼1;2
��
d >0;

��Pi¼1;2
��
d >0

o
.

5. Simulation results

In this section, the simulations results will be provided to
illustrate the control performance of this closed-loop system, using
an AUV model with physical and hydrodynamic characteristics as
follows:

m ¼ 185, d ¼ 0:02, m11 ¼ 215, m22 ¼ 265, m33 ¼ 265, m55 ¼
80, m66 ¼ 80，Yv ¼ � 300, Yvjvj ¼ � 200, Zw ¼ � 300, Zwjwj ¼ �
200, Mq ¼ � 50, Mqjqj ¼ � 100, Nr ¼ �50 and Nrjrj ¼ � 100.

In order to demonstrate the robustness of the proposed
controller, all these numerical simulations consider the system-
atical uncertainties and unknown disturbances given by

dq ¼ 1� randð1Þ þ 3� sinð0:01� tÞ þ 1þ 0:2� ðd55 � qÞ
dr ¼ 1� randð1Þ þ 3� cosð0:01� tÞ þ 1þ 0:2� ðd66 � rÞ
Here, randð1Þ is the zero-mean random noise with amplitude of

1.
The initial conditions of the vehicle is.
½xð0Þ;yð0Þ;zð0Þ�¼ ½0;20;0�m, ½fð0Þ;qð0Þ;jð0Þ�¼ ½0;0;0�rad,
½uð0Þ;vð0Þ;wð0Þ�¼ ½1;0;0�m=s, ½pð0Þ;qð0Þ;rð0Þ�¼ ½0;0;0�rad=s,
tqð0Þ ¼ 0Nm, trð0Þ ¼ 0Nm.
In these simulations, the desired surge velocity is set to ud ¼

1m=s. The bounds for ev, eh, v, w, q, a, _zp, U1 and U2 are taken as
jevj � 20m, jehj � 30m, jvj � 0:2m=s, jwj � 0:2m=s, jcosðqÞj>0:5,
jcosðq � aÞj � 0:5,

�� _zp�� � 0:5, and thus 1 � U1 � 1:12,
0:5 � U2 � 1:04. To ensure the asymptotic stability of the closed-
loop control system, the control gains for the proposed controller
are selected as lq ¼ 0:003, lr ¼ 0:003, k1 ¼ 0:075, k2 ¼ 0:04, k3 ¼
0:4, k4 ¼ 0:4, k5 ¼ 0, k6 ¼ 0, k7 ¼ 500, k8 ¼ m11m55u=m33,
k9 ¼ 600 and k10 ¼ � m11m66u=m22.

Simulation results of following a cylindrical spiral desired path
are provided in Figs. 5e8. Specifically, a simple observation of Fig. 5
(a) and (b) shows that, with the proposed controller, the under-
actuated AUV is capable of following the reference path even



Fig. 5. Simulation results of following cylindrical spiral path. (a) 3D path; (b) paths projected on the horizontal and vertical planes.
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though perturbed by internal and external disturbances. Fig. 6 il-
lustrates that the tracking errors, sway and heave velocities, pitch
and yaw rates converge to a small neighborhood of the origin. It can
be seen that, during the transient, the response speed of the
translational and angular velocities is faster than that of the
tracking errors, at the same time, the response speed of the path
angle tracking errors are faster than that of the cross-track errors.
Therefore, the time scale decomposition mentioned-above is quite
natural in some sense. Fig. 7 depicts the control inputs of the
Fig. 6. Some important variables. (a) the tracking err
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proposed method in pitch direction and in yaw direction. The given
disturbances and the outputs of the ESO are plotted in Fig. 8. It
reveals that the unknown disturbances, adding on the closed-loop
control system, can be accurately estimated by the developed ESO,
as noticed before.

Moreover, comparisons with the backstepping controller are
provided. To this end, the simulation results, using the back-
stepping controller, are also plotted in Figs. 5e7. Referring to
Figs. 5e7, one might find that the control performance of the
ors; (b) the translational and angular velocities.



Fig. 7. Control inputs.

Fig. 8. Estimation performance by using the ESO.
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singular perturbation controller is close to that of the backstepping
controller, and the control inputs of the singular perturbation
controller is smoother than that of the backstepping controller.
Therefore, we come to a conclusion that the proposed controller is
well behaved. And in implementations, the complexity of the
proposed method is much simpler than that of the backstepping
control, as noticed before. If considering the stability analysis, the
complexity of these two methods will be similar.

In brief, the efficacy of the proposed approach to 3D path
following control of underactuated AUVs subject to internal and
external disturbances is therefore sufficiently demonstrated.
6. Conclusion

This paper considered the 3D path following control problem of
underactuated AUVs subject to unknown internal and external
disturbances. The overall path following controller was divided into
two terms: an integrator and a stabilizing controller, using integral
769
control method. By appropriately selecting the control gain, a time
scale separation was artificially forced into the closed-loop control
system. Singular perturbation theory was thus applied to analyze
the system properties via order reduction. Specifically, the inte-
grator was considered as a fast dynamical control law that designed
to form a desired space configuration and, as a results, construct an
ideal reduced model, in which the stabilizing controller was
designed independently. To reduce the control complexity, the
reduced model was decomposed into three subsystems by utilizing
a forced singular perturbation method, followed by the design of
each subsystem separately. Moreover, we proved the asymptotic
stability of the closed-loop system with a composite Lyapunov
function and provided mathematical bounds of the control gains.
Simulation studies were also conducted to evaluate the control
performance and a good path following ability was observed. They
revealed that the proposed controller can stabilize the vehicle to
desired path under unknown internal and external disturbances.
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Appendix A

Proof of assumption (1)e(4).
Recalling (35) and (40), we satisfy conditions (1) and (2) with

a11 ¼ 2k1u=p, a11 ¼ 2k2jU2jmin=p, a21 ¼ m1ðk3 þk5Þ, a22 ¼
m1ðk4 þk6Þ, 411ðx1Þ ¼ jevj, 412ðx2Þ ¼ jehj, 421ð~y1Þ ¼ j~qej and

422ð~y2Þ ¼ j~jej. Using these results, we compute

vV2ðxÞ
vx

½f ðx; y;Hðx; yÞ Þ � f ðx;GðxÞ;Hðx;GðxÞ Þ Þ �

¼ ev½ � U1 sinðqe � aÞ þ U1 sinðbqe � aÞ � þ eh½U2 sinðje þ bnÞ
� U2 sinðbje þ bnÞ �

� jU1jmax411ðx1Þ421ð~y1Þ þ jU2jmax412ðx2Þ422ð~y2Þ

and�
vW2ðx; ~yÞ

vx
� vW2ðx; ~yÞ

v~y
vGðxÞ
vx

�
f ðx; y;Hðx; yÞ Þ

¼ k1~qeU1 sinðqe � aÞ � k2~jeU2 sinðje þ bnÞ
� k1j~qejjU1jmaxðj~qej þ k1jevjÞ þ k2j~jejjU2jmaxð~je þ k2jehjÞ
� k1jU1jmaxðk1411ðx1Þ þ 421ð~y1Þ Þ421ð~y1Þ

þ k2jU2jmaxðk2412ðx2Þ þ 422ð~y2Þ Þ422ð~y2Þ

thereby satisfy assumptions (3) and (4) with b11 ¼ jU1jmax, b21 ¼
jU2jmax, b12 ¼ k1

2jU1jmax, b13 ¼ k1jU1jmax, b22 ¼ k2
2jU2jmax and

b23 ¼ k2jU2jmax.
Proof of assumption (5)e(7).
Recalling (44), we satisfy the assumption (5) with a21 ¼ a22 ¼

m2, w21ð~z2;~z3Þ ¼
�jd33jmin ~w

2=m33 þ
�jd55jmin þ k7

�
~q2=m55

�1 =

2
and

w22ð~z1;~z4Þ ¼ �jd22jmin~v
2=m22 þ

�jd66jmin þ k9
�
~r2=m66

�1 =

2
. Following

that,

v½ð1� n2ÞV2ðxÞ þ n2W2ðx; ~yÞ �
vðx; ~yÞ

�
DF
DG

�
¼ n2~qe~qþ n2~je

1
cosðqÞ~r

� n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjd55jmin þ k7Þ

�
m55

q 421ð~y1Þw21ð~z2;~z3Þ

þ n2
jcosðqÞjmin

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjd66jmin þ k9Þ

�
m66

q 422ð~y2Þw22ð~z1;~z4Þ

and
770
�
vW1ðx; y; ~zÞ

vðx; yÞ � vW1ðx; y; ~zÞ
v~z

vHðx; yÞ
vðx; yÞ

��
_x
_y

�
¼ k1ðk5 þ k3Þ

�
m11u
d33

~wþ ~q
�
U1sinðqe � aÞ � k2ðk6 þ k4ÞcosðqÞ

�
�
m11u
d22

~v� ~r
�
U2sinðje þ bnÞ þ ðk5 þ k3Þ

�
m11u
d33

~wþ ~q
��

q

� qp
	
� ðk6 þ k4ÞcosðqÞ

�
m11u
d22

~v� ~r
��

1
cosðqÞ r � rp

�
� ðk5 þ k3ÞAk21jU1jmax411ðx1Þw21ð~z2;~z3Þ þ ðk5

þ k3ÞA½k1jU1jmax þ ðk5 þ k3Þ �421ð~y1Þw21ð~z2;~z3Þ þ ðk5
þ k3ÞA

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjd55jmin þ k7Þ

�
m55

q w2
21ð~z2;~z3Þ þ ðk6

þ k4ÞBk22jU2jmax412ðx2Þw22ð~z1;~z4Þ þ ðk6 þ k4ÞB½k2jU2jmax

þ ðk6 þ k4Þ �422ð~y2Þw22ð~z1;~z4Þ þ ðk6
þ k4ÞB

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjd66jmin þ k9Þ

�
m66

q w2
22ð~z1;~z4Þ

Here,

A¼ m11u
jd33jmin

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd33jmin

�
m33

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjd55jmin þ k7Þ

�
m55

q

B¼ m11u
jd22jmin

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd22jmin

�
m22

q þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjd66jmin þ k9Þ

�
m66

q
Therefore, we satisfy the assumptions (6) and (7) with

b11 ¼

264
0

n2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjd55jmin þ k7Þ
�
m55

q
375

b21 ¼

264
0

n2
1

jcosðqÞjmin

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjd66jmin þ k9Þ

�
m66

q
375

b12 ¼ ðk5 þ k3ÞA
�

k1
2jU1jmax

k1jU1jmax þ ðk5 þ k3Þ
�

b22 ¼ ðk6 þ k4ÞB
�

k2
2jU2jmax

k2jU2jmax þ ðk6 þ k4Þ
�

b13 ¼ðk5 þ k3ÞA
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjd55jmin þ k7Þ
�
m55

q

b23 ¼ðk6 þ k4ÞB
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjd66jmin þ k9Þ
�
m66

q
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