References
- Proakis, JG, "Digital Communications," Fundamentals of Codes, Graphs, and Iterative Decoding, Springer, Boston, MA, pp. 1-12, 2002.
- Song, G., Li, Y., "Asymptotic throughput analysis for channel-aware scheduling," IEEE Trans. Commun, vol.54, no.10, pp. 1827-1834, 2006. https://doi.org/10.1109/TCOMM.2006.881254
- Eldemerdash, Y.A., Dobre, O.A., Liao, B.J., "Blind identification of SM and Alamouti STBC-OFDM signals," IEEE Trans. Wireless Commun, vol. 14, no. 2, pp. 972-982, 2015. https://doi.org/10.1109/TWC.2014.2363093
- Marey, M., Dobre, O.A., "Automatic identification of space-frequency block coding for OFDM systems," IEEE Trans. Wireless Commun, vol. 16, no. 1, pp. 117-128, 2017. https://doi.org/10.1109/TWC.2016.2619676
- Marey, M., Dobre, O.A., Liao, B., "Classification of STBC systems over frequency-selective channels," IEEE Trans. Veh. Technol, vol. 64, no. 5, pp. 2159-2164, 2015. https://doi.org/10.1109/TVT.2014.2335415
- Eldemerdash, Y.A., Dobre, O.A., Oner, M., "Signal identification for multiple-antenna wireless systems: Achievements and challenges," IEEE Commun. Surv. Tutor, vol. 18, no. 3, pp. 1524-1551, 2016. https://doi.org/10.1109/COMST.2016.2519148
- Karami E, Dobre O, "Identification of SM-OFDM and AL-OFDM signals based on their second-order cyclostationarity," Vehicular Technology IEEE Transactions, vol. 64, no. 3, pp. 942-953, 2015. https://doi.org/10.1109/TVT.2014.2326107
- DiDonato, A.R., Morris Jr, A.H., "Computation of the incomplete Gamma function ratios and their inverse," ACM Trans. Math. Softw, vol. 12, no. 4, pp. 377-393, 1986. https://doi.org/10.1145/22721.23109
- Gil, A., Segura, J., Temme, N.M., "Efficient and accurate algorithms for the computation and inversion of the incomplete Gamma function ratios," SIAM J. Sci. Comput, vol. 34, no. 6, pp. A2965-A2981, 2012. https://doi.org/10.1137/120872553
- Urkowitz, H., "Hansen's method applied to the inversion of the incomplete Gamma function, with applications," IEEE Trans. Aero. Elec. Sys, vol. AES-21, no. 5, pp. 728-731, 1985. https://doi.org/10.1109/TAES.1985.310601
- Dohler, M., Arndt, M., "Inverse incomplete Gamma function and its application," Electron. Lett, vol. 42, no. 1, pp. 35-36, 2006. https://doi.org/10.1049/el:20063446
- De Haan, L., Ferreira, A.F, Extreme Value Theory, New York, USA: Springer, 2006.
- BeirlantJ, Segers J, De Waal D, Statistics of Extremes: Theory and Applications, Wiley, 2005.
- Gasull, A., Lopez-Salcedo, J.A., Utzet, F, "Maxima of Gamma random variables and other Weibull-like distributions and the Lambert W function," Test: An Official Journal of the Spanish Society of Statistics and Operations Research, vol. 24, no. 4, pp. 714-733, 2015. https://doi.org/10.1007/s11749-015-0431-9
- Kalyani S., K.R.M., "The Asymptotic Distribution of Maxima of Independent and Identically Distributed Sums of Correlated or Non-Identical Gamma Random Variables and its Applications," IEEE Trans. Commun. vol. 60, no. 9, pp. 2747-2758, 2012. https://doi.org/10.1109/TCOMM.2012.071912.110311
- Li, Y.; Hu, G.B., Hu, X.L., Wu, S.S., "Approximate analytic aproximation for inverse incomplete Gamma function in STBC recognition," J. Yangzhou Uni. (Nat. Sci. Ed.), vol. 23, no. 2, pp. 36-41, 2020. https://doi.org/10.3969/j.issn.1671-4652.2002.02.010
- Gao, M., Li, Y., Dobre, O.A., Al-Dhahir, N, "Blind identification of SFBC-OFDM signals based on the central limit theorem," IEEE Trans. Wireless Commun, vol. 18, no. 7, pp. 3500-3514, 2019. https://doi.org/10.1109/twc.2019.2914687