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Abstract 

 
In cognitive radio networks where unlicensed secondary users opportunistically access to 
licensed spectrum unused by licensed primary users, spectrum sensing is one of the key issues 
in order to effectively use the frequency resource. For enhancing the sensing performance in 
energy detection-based spectrum sensing, spatial diversity based on multiple antennas is 
utilized. However, the sensing performance can be degraded when antennas are spatially 
correlated, resulting in inducing the harmful interference to primary users. 
To overcome this problem, in this paper, an advanced energy detector is proposed. In the 
proposed sensing method, a weight matrix based on the eigenvalues of the spatial channels 
without any prior information on the primary signals is defined and utilized. In numerical 
simulations, it is shown that the proposed detector outperforms the conventional detector with 
regard to false-alarm and detection probabilities when antenna are spatially correlated. 
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1. Introduction 

Due to the lack of available frequency resource, research has been performed on the 
cognitive radio for efficient spectrum usage. In cognitive radio networks, opportunistic access 
to spectrum of licensed primary users is allowed to unlicensed secondary users under the 
condition that it does not cause catastrophic interference to primary users [1]. To prevent 
interfering communications among primary users, in advance of accessing to licensed 
spectrum, secondary users should identify the available spectrum for secondary users with 
spectrum sensing. Spectrum sensing employing various detection techniques finds the 
portions of spectrum currently unused by primary users. Spectrum sensing is therefore one of 
key issues for realization of cognitive radio networks. 

Recently, lots of spectrum sensing methods have been studied. Those of sensing techniques 
can be categorized into two groups. One of the groups assumes that the secondary users have 
prior knowledge of the primary user signals (e.g., channel parameters, modulation scheme, 
and statistical features of the primary user signals). Sensing technique based on the matched 
filter, which requires channel knowledge, is introduced in [2]. There are also feature detection 
techniques that utilize statistical features (e.g., covariance, cyclostationary) of the primary user 
signals [3-5]. The other group of sensing techniques assumes mostly no prior information and 
is based on the simple received energy measurement [6-13]. Although the first group 
outperforms the second group using energy detection technique in terms of the sensing 
performance, the first group has more computational complexity and less generality. 
Generally, in cognitive radio networks, heterogeneous wireless communication systems which 
use each licensed spectrum may coexist in the same area. In this case, the first group that 
requires prior information is too expensive to detect multiple licensed spectra. Accordingly, 
the second group using energy detection is suitable in heterogeneous wireless communication 
systems. In this reason, spectrum sensing based on energy detection has been studied in depth 
[14]. 

In cognitive radio networks, secondary users should be located far away from primary 
users, because it does not cause the harmful interference to primary users. In this circumstance, 
the signal to noise ratio (SNR) of the signal transmitted by the primary user is mostly less than 
0dB at the secondary users, which degrades the sensing performance of energy detectors 
because of the lack of the detection sensitivity [15] [16]. If a secondary user fails to detect 
received primary user signals, then secondary user signal causes fatal interference to the 
primary receivers. Adversely, if secondary user makes false alarm in spectrum sensing, then 
transmission opportunity is missed and it is concluded to throughput degradation of the 
secondary system. Therefore, sensing performance enhancement of energy detection-based 
sensing techniques should be required. 

At a single sensing node of a secondary system, research for performance enhancement of 
energy detection-based sensing has focused on utilizing spatial diversity by employing 
multiple antennas [7-11]. These researches show that employing multiple antennas is quite 
effective for sensing performance enhancement. However, considering antenna correlation for 
feasibility, the achievable spatial diversity gain is rather deteriorated [10][11]. Hence, the 
demand for an advanced sensing technique which can overcome the problem due to spatially 
correlated antennas is come to the fore. To cope with adverse effect of correlation, 
eigenvalue-based methods can be good solutions. Maximum eigenvalue detection [17], GLRT 
based signal-subspace eigenvalues method [18], maximum-minimum eigenvalues detection 
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[19] and optimal eigenvalue weighting detection [20] are representative eigenvalue-based 
sensing schemes. These can achieve much better sensing performance than energy detection 
with antenna correlation. However, these eigenvalue-based methods also require information 
of eigenvalues. Moreover, since these methods deal with eigenvalues, much higher 
computational complexity than energy detection-based sensing is inevitable. It gives us a 
motivation to propose a new sensing scheme which shows better sensing performance than 
conventional energy detection-based sensing techniques even with antenna correlation and has 
reasonable computation complexity. 

In order to overcome the poor sensing performance caused by the correlation between 
antennas, in this paper, the enhanced energy detector for sensing by the secondary user with 
multiple antennas is proposed. Although the proposed sensing technique does not require 
more information on primary signals than the conventional energy detector, it outperforms the 
conventional energy detector in terms of the sensing performance under the condition where 
spatial correlation between antennas exists. Also, since the proposed sensing technique does 
not need to deal with channel eigenvalues, it has much less computational complexity than that 
of eigenvalue-based methods. The detection and false-alarm probabilities of the proposed 
detector are derived. Also, the performance is analyzed and based on that, it is verified that the 
proposed detector is superior to the conventional method. 

The remainder of this paper is organized as follows: Section 2 introduces the system model 
of spectrum sensing by energy detector with multiple antennas. Then, Section 3 proposes the 
advanced detector and analyzes the sensing performance of the proposed method. In Section 4, 
numerical results are shown, and finally Section 5 shows concluding remarks of this paper. 

2. Sensing Performance with Multi-Antenna  

 
Fig. 1. System model of spectrum sensing by energy detector with multiple antennas 

 

2.1 System Model of Spectrum Sensing with Multi-Antenna 
In this paper, as shown in Fig. 1, a secondary user equipped with M  antennas performs 
spectrum sensing. For this, the binary hypothesis test is performed as follows: 
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where ( )ix k  is the received signal by the secondary transmitter at the i th antenna of the k th 

time instant. ( )in k  means the additive white Gaussian noise with zero mean and variance 2
nσ , 

i.e., ( ) ( )20,i nn k σCN: , and it is assumed to be independent and identically distributed (i.i.d.). 

( )ih k  denotes the complex channel coefficient following Rayleigh distribution, i.e., 

( ) ( )20,i hh k σCN: . Finally, ( )s k  is the signal that the primary user transmits with M-ary 
phase shift keying (MPSK) modulation. It is also assumed that the received signal power is P  
when the secondary user receives ( )s k . Since we aim to analyze how spatial correlation 

affects sensing performance, the channel coefficients ( )ih k  are assumed to be correlated 
between antennas, whereas independent in the time domain. In addition, it is assumed that 
( )s k , ( )ih k  and ( )in k  are independent of each other.  

In general, the spatial correlation is modelled as the exponential correlation because of its 
simplicity and accuracy [21], so the exponential correlation model is also considered as spatial 
correlation in this paper. When the number of the antennas is M , the matrix of the antenna 
correlation, R , can be defined as follows: 

R  which denotes the antenna correlation matrix is defined as  

*
,=   , , = 1, , ,    0 1,, >

i j

ij
ji

i jR i j MR i j
ρ ρ

− ≤ ≤ ≤


L                             (2) 

where the size of R  is M M×  and ρ  is the correlation coefficient between two adjacent 
antennas. It is noted that the correlation coefficients have only real values, because the real and 
imaginary parts of ( )ih k  are independent of each other. Therefore, the correlation coefficient, 
ρ , can be approximated as defined in [22]  

2
223

= ,
d

ce λρ

 
 − Λ
 
                                                             (3) 

 where cλ , Λ  and d  denote the wavelength of the signal, the angular spread and the antenna 
spacing between two contiguous antennas, respectively. As a result, R  becomes a symmetric 
Toeplitz matrix. 

2.2 Energy Detector with Multiple Antennas 
Sensing performance of the secondary user with multi-antenna is investigated in [11]. The 
energy of the received signal is sensed during the sensing period by the energy detector, and 
then, whether the primary user uses the spectrum or not is determined by comparing the 
estimated energy with a predefined threshold. When the sensing period is composed of N  
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samples in the time domain, the test statistic for energy detection can be  

( ) ( ) 2

=1 =1
= = .
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H

e i
k i

T X X X x k∑∑                                                (4) 

The distribution of the test statistics ( )eT X  can be expressed as  
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With decision threshold eτ , the detection and false-alarm probabilities can be  
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 respectively. ( ) 2 /21=
2

t

x
Q x e dt

π

∞ −∫  means the tail probability of the Gaussian probability 

density function (PDF) with zero mean and unit variance, and 2 2= /h nPγ σ σ  means the 
received SNR at the secondary user. 

When the target detection probability should satisfy the following conditions, DeP α≥ , the 
decision threshold, eτ , can be derived from (6) as  

( ) ( ) ( )21 2 2 2 2

=1
= .

M

e h i n h n
i

Q N P NM Pτ α σ λ σ σ σ− + + +∑                                  (8) 

2.3 Spatially Correlated Antennas 
As for the energy detector with multi-antenna, the false-alarm and detection probabilities are 
optimum for independent antennas [14]. When antennas become correlated, however, the 
sensing performance is worse than that of the independent antenna case. Based on (6) and (7), 
the sensing performance of the energy detector with multi-antenna can be investigated. 
Regardless of values of M , N  and γ , it is obvious that 
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Therefore, regardless of M , the false-alarm probability monotonically increases and the 
detection probabilty monotonically decreases according to the antenna correlation coefficient, 
respectively. As a result, the following relationship can be determined: 

0 1
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,lim lim

.lim lim
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ρ ρ

ρ ρ

→ →

→ →

≤

≥
                                                          (10) 

When the antenna correlation occurs, the performance of the energy detector deteriorates. 
Especially, the higher the spatial correlation between antennas is, the worse the sensing 
performance is [11]. 

3. Advanced Energy Detector 

3.1 Proposed Detector 
In the previous chapter, we have investigated how the spatial correlation between antennsa 
affects the performance of the energy detector. Even if the energy detector shows optimum 
performance with i.i.d. received signals, its sensing performance is degraded with correlated 
antennas. Hence, an advanced detector which can overcome the adverse effect of spatial 
correlation is required. 

With spatially correlated channels, to achieve better sensing performance, the energy of 
primary samples received at each antenna should be adequately weighted. However, in general, 
a secondary sensing node does not know any information on the primary signals including the 
eigenvalues of spatial channels. Therefore, it is required to find the weight matrix for the 
received signals, in which the weights are in proportion to the eigenvalues of the spatial 
channels and can be determined without any prior information on the primary signals. 

Let us define the proposed detector with the test statistic ( )pT X  as follows [23]:  

( )
1

0

= ,
H

H
p p p

H

T X X W X τ><                                                      (11) 

where pτ  is the threshold for the proposed detector and pW  is the weight matrix for the 
proposed detector. Since the received signals are independent for time index k , the test 
statistic ( )pT X  can be expressed with the partial statistic ( )( )pT X k  as follows:  
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where pkW  is a M M×  diagonal block of a block diagonal matrix pW . If the probability of 
which there is primary signals is ν , then 1H  and 0H  occur with the probabilities ν  and 
1 ν− , respectively. Then, the M M×  covariance matrix of the received signal vector ( )X k  
can be  
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Without any prior knowledge of the transmitted signal by the primary suser, ( )X kΣ  can be 
easily approximated as follows:  

( ) ( ) ( )
=1

1ˆ =
N

H
X k

k
X k X k

N
Σ ∑                                             (14) 

Moreover, for sufficiently large N , the difference between ( )X kΣ  and ( )
ˆ

X kΣ  is almost 

disappeared. Hence, ( )X kΣ  can be obtained blindly at a secondary sensing node. Though the 
extent of reflecting the channel gains of spatial channels varies with the value of ν , the 
eigenvalues of ( )X kΣ  is in proportion to the eigenvalues of R . Therefore, ( )X kΣ  is adequate for 
the weight matrix, because its eigenvalues are in proportion to the eigenvalues of R , and 
moreover, it can be obtained totaly blindly. So the M M×  diagonal block of the proposed 
weight matrix can be defined as  
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Then, the partial statistic of the proposed detector can be  
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 Finally, the proposed blindly combined detector is defined as  
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3.2 Performance Analysis of Proposed Detector 

In (16), since { } =1

M
i iu  are orthonormal eigenvectors of pkW , ( ){ }

=1

M

p i
Y i k  are independent 

complex Gaussian random variables which are distributed as follows [24]:  
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Since ( )piY k  is a complex Gaussian random variable, ( ) ( )H
pi piY k Y k  becomes a gamma 

random variable. Then, under 0H  and 1H , the PDF of ( ) ( )H
pi piY k Y k  is given by  
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 respectively [25]. The partial statistic ( )( )pT X k  is a gamma random variable, and since 

( )( ){ }
=1

N

p k
T X k  are independent for k , the test statistic of the proposed detector ( )pT X  can 

be obtained by the central limit theorem (CLT). Then, the test statistic ( )pT X  under 0H  and 

1H  are asymptotically normally distributed as follows:  

( )

( )

2 2 4
0

=1
22 2 4

=1

: ,

.

M

p h n i n
i

M

h n i n
i

H T X N P

N P

ν σ σ λ σ

ν σ σ λ σ


+




+ 


∑

∑

N:

                           (21) 

 and  



4608                                                                   Kim et al.: Advanced Energy Detector with Correlated Multiple Antennas 

( ) ( )

( )( )

2 4 2 2 2 4
1

=1
22 4 2 2 2 4

=1

: 1 ,

1 ,

M

p h i h n i n
i

M

h i h n i n
i

H T X N P P

N P P

ν σ λ ν σ σ λ σ

ν σ λ ν σ σ λ σ


+ + +




+ + + 


∑

∑

N:

              (22) 

 respectively. With the decision rule in (11), the detection and false-alarm probabilities are 
derived with the PDFs of the test statistic ( )pT X  under 0H  and 1H  as follows [23]:  
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 respectively. With a target detection probability constraint DpP α≥ , from (23), pτ  is 

determined to minimize FpP  as follows:  
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 Then, with DpP α≥ , FpP  of the proposed blindly combined detector can be calculated as  
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 On the other hand, with a target false-alarm probability constraint FpP β≤ , the decision 

threshold pτ  should be determined to maximize DpP  as follows:  
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 Then, with FpP β≤ , DpP  is given by  
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3.3 Performance Comparison with Conventional Energy Detector 
By the derived detection and false alarm probabilities above, we compare the proposed 
detector with the conventional energy detector in terms of the performance of the false-alarm 
and detection probabilities. The sensing performance comparison is performed when = 0ρ
(antennas are uncorrelated) and = 1ρ (antennas are fully correlated). 

With the antenna correlation matrix R , when antennas are uncorrelated ( )= 0ρ , all the 
eigenvalues of R  are equal to 1. Then, the detection and false-alarm probabilities are the same 
as those of the energy detector, respectively,  

0 0 1 1
= , = .lim lim lim limDp De Dp DeP P P P

ρ ρ ρ ρ→ → → →
                                        (29) 

On the other hand, when = 1ρ , the eigenvalues become zero except the maximum 
eigenvalue. Then, DpP  and FpP are calculated as follows:  
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DpP  and FpP  of the proposed detector vary with the probability of the presence of primary 
signals, ν . In (30), when ν  is equal to 0 and 1, the values of the term in the Q-function are  
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respectively. In (30), 
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 is monotonically decreasing function of ν . Hence, 

the upper and the lower bounds of the asymptotic detection probability of the proposed 
detector are the same as that of the energy detector,  
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≥                                                      (34) 

On the other hand, in case of the asymptotic false-alarm probability in (31), when ν  
becomes 0 and 1, the values of the term in the Q-function are calculated as  
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 In (36), for reasonable performance in the false-alarm probability, FeP  and 0.5FpP ≤ . 
Then, for any values of M , N  and γ , it is obvious that  
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 Hence, since the ( )Q x  is monotonic decreasing function of x , the asymptotic false alarm 
probability of the conventional method is the upper bound of that of the proposed detector. 
Therefore, regardless of antenna correlation, the proposed detector constantly outperforms the 
conventional method for all ν  values. 

4. Numerical Results 
In this section, we compare the proposed detector with the conventional detector with regard 
to the sensing performance through numerical simulations. Fig. 2 ( )= / 8, = 0.5cd λ Λ o  
compares the proposed detector with the conventional scheme in terms of the false-alarm 
probability according to antenna correlation. The simulation result is well matched with our 
sensing perfromance analysis. As we already verified with numerical analysis in the previous 
chapter, the proposed detector is better than the conventional scheme. Specifically, as the 
spatial correlation bwteen antennas is higher, the false-alarm probability of the proposed 
detector gets worse. However, the performance is still superior to that of the conventional 
technique. In this reason, the performance of the conventional method with 6 antennas is 
crossing with that of the proposed detector with 4 antennas. In Fig. 3 ( )= / 2cd λ , the 
false-alarm probability of the proposed method is shown according to values of angular spread 
when SNR is 0dB . As we analyzed in the previous chapter, the false-alarm probability of the 
proposed scheme is degraded as antenna correlation increases. Since the weight matrix of the 
proposed detector is in proportion to eigenvalue of each spatial channel, the sensing 
performance is better with correlated antennas than that with independent antennas. In Table 1, 
false-alarm probability of the proposed detector is compared with that of the conventional 
energy detector with various extent of antenna correlation (SNR= 0dB , 4 Rx antennas).  When 
all of Rx antennas are independent, the sensing performance of the proposed detector is the 
same as that of the conventional energy detector. However, the sensing performance of the 
conventional energy detector is deteriorated as antenna correlation increases. In contrast to the 
conventional energy detector’s case, the sensing performance of the proposed detector is 
improved with antenna correlation, because the proposed detector adequately combines the 
received energy from each Rx antenna with the weight matrix. Hence, the proposed detector 
achieves much better sensing performance comparing to energy detector with antenna 
correlation. 

The weight matrix of the proposed method is obtained by averaging the covariance matrix. 
Hence, it requires some number of samples until the weight matrix have converged. Fig. 4 
( )= / 2, = 0.5cd λ Λ o  illustrates mean squared error between the ideal weight matrix and the 
weight matrix obtained by averaging for 10000 time samples. From the figure, it can be 
concluded that over 1000 time samples are required for convergence of the weight matrix. To 
verify the extent of the convergence, in Fig. 5 ( )= / 2, = 0.5cd λ Λ o , we illustrate the 
false-alarm probabilities of the proposed scheme for = 4M  with and without averaging time 
for 1000 time samples. Based on Fig. 5, it is confirmed that the proposed detector requires at 
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least order of 1000 time samples for averaging time. It is a weak point of the proposed method 
compared to the energy detector. However, if the secondary system in CR networks not 
consider the mobility like IoT systems, the averaging time for the proposed detector can be 
allowed.  

Furthermore, computational complexity of the proposed detector is a little bit higher than 
that of the energy detector, but it is much lower than that of the eigenvalue-based method. The 
computational complexity of the energy detector is ( )O MN , where M  is the number of 
received antenna and N  is the number of received samples [21], and the computational 
complexity of the eigenvalue-based sensing is ( )2 2 3 3K LNM O K M L+ , where K  is the 
oversampling factor and L  is the smoothing factor [19]. Since the proposed detector requires 
averaging process for weight matrix, the computational complexity of the proposed detector is 

( )2TMN O MN+ , where T  is the number of averaging samples. It means the proposed 
detector shows better sensing performance and has reasonable computation complexity. 
 

 
 

Fig. 2. False alarm probabilities of the proposed and conventional detectors as the number of antennas 
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Fig. 3. False alarm probabilities of the proposed detector according to values of the angular spread. 

 
Table. 1. False alarm probabilities of the conventional and proposed detectors with various antenna 

correlation 
Ant. Corr. Independent 60Λ =  30Λ =  5Λ =  Fully corr. 
Conv. ED 68.871 10−×  52.257 10−×  41.742 10−×  0.00232  0.00264  
Proposed 68.870 10−×  64.175 10−×  61.084 10−×  85.799 10−×  84.359 10−×  

 

 
Fig. 4. Mean square error of the weight matrix. 
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Fig. 5. False-alarm probability of the proposed detector with and without averaging time. 

5. Conclusions 
In this paper, we analyzed how the spatial correlation between antennas affects the sensing 
performance of the conventional energy detector. Based on that, we proposed the advanced 
energy detector which can overcome the adverse effect induced by the antenna correlation. 
Performance between the proposed and conventional detectors is compared, based on an 
analytic method. Through numerical simulations, it is confirmed that the derived false-alarm 
and detection probabilities well match the simulation and the sensing performance of the 
proposed detector is superior to that of the conventional detector in highly correlated antenna 
environment. 
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