DOI QR코드

DOI QR Code

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van (Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT)) ;
  • Vo, Cuong Trung (Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT)) ;
  • Nguyen, Phuoc Trong (Faculty of Civil Engineering, Ho Chi Minh City Open University) ;
  • Ashraf, Mahmud (School of Engineering, Deakin University Geelong)
  • Received : 2020.08.22
  • Accepted : 2021.08.28
  • Published : 2021.11.25

Abstract

This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.

Keywords

Acknowledgement

The authors acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

References

  1. Abed, F., AlHamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Construct. Steel Res., 80(Supplement C), 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005.
  2. ASCE (2007), Seismic Rehabilitation of Existing Buildings. American Society of Civil Engineers.
  3. Bhayusukma, M.Y. and Tsai, K.C. (2014), "High-strength RC columns subjected to high-axial and increasing cyclic lateral loads", Earthq. Struct., 7(5), 779-796. https://doi.org/10.12989/eas.2014.7.5.779.
  4. Bradford, M.A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Construct. Steel Res., 58(2), 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8.
  5. Brown, N.K., Kowalsky, M.J. and Nau, J.M. (2015), "Impact of D/t on seismic behavior of reinforced concrete filled steel tubes", J. Construct. Steel Res., 107(Supplement C), 111-123. https://doi.org/10.1016/j.jcsr.2015.01.013.
  6. Cao, V.V. (2019), "Experimental behaviour of recycled aggregate concrete-filled steel tubes under axial loading", Int. J. Civil Eng., 17(8), 1341-1351. https://doi.org/10.1007/s40999-018-0383-z.
  7. Cao, V.V., Le, Q.D. and Nguyen, P.T. (2019), "Experimental behaviour of concrete-filled steel tubes under cyclic axial compression", Advan. Struct. Eng., 23(1), 74-88. https://doi.org/10.1177/1369433219866107.
  8. Chen, J., Wang, J. and Li, W. (2017), "Experimental behaviour of reinforced concrete-filled steel tubes under eccentric tension", J. Construct. Steel Res., 136, 91-100. https://doi.org/10.1016/j.jcsr.2017.05.004.
  9. Chitawadagi, M.V. and Narasimhan, M.C. (2009), "Strength deformation behaviour of circular concrete filled steel tubes subjected to pure bending", J. Construct. Steel Res., 65(8), 1836-1845. https://doi.org/10.1016/j.jcsr.2009.04.006.
  10. Council, A.T. (1992), Guidelines for Cyclic Seismic Testing of Components of Steel Structures.
  11. Council, B.S.S. (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Report FEMA-356, Washington, D.C.
  12. Ding, F.X., Luo, L., Wang, L., Cheng, S. and Yu, Z.W. (2018), "Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns", J. Construct. Steel Res., 144, 135-152. https://doi.org/10.1016/j.jcsr.2018.01.017.
  13. Dundu, M. (2012), "Compressive strength of circular concrete filled steel tube columns", Thin-Walled Struct., 56(Supplement C), 62-70. https://doi.org/10.1016/j.tws.2012.03.008.
  14. Elchalakani, M., Zhao, X.L. and Grzebieta, R. (2004), "Concrete-filled steel circular tubes subjected to constant amplitude cyclic pure bending", Eng. Struct., 26(14), 2125-2135. https://doi.org/10.1016/j.engstruct.2004.07.012.
  15. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Construct. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6.
  16. Fam, A., Qie Frank, S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130(4), 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631).
  17. Han, L.H. and Yang, Y.F. (2005), "Cyclic performance of concrete-filled steel CHS columns under flexural loading", J. Construct. Steel Res., 61(4), 423-452. https://doi.org/10.1016/j.jcsr.2004.10.004.
  18. Han, L.H., He, S.H. and Liao, F.Y. (2011), "Performance and calculations of concrete filled steel tubes (CFST) under axial tension", J. Construct. Steel Res., 67(11), 1699-1709. https://doi.org/10.1016/j.jcsr.2011.04.005.
  19. Han, L.H., Hou, C.C., Zhao, X.L. and Rasmussen, K.J.R. (2014), "Behaviour of high-strength concrete filled steel tubes under transverse impact loading", J. Construct. Steel Res., 92(Supplement C), 25-39. https://doi.org/10.1016/j.jcsr.2013.09.003.
  20. Ho, J.C.M. and Luo, L. (2012), "Uni-axial behaviour of normal-strength concrete-filled-steel- tube columns with external confinement", Earthq. Struct., 3(6), 889-910. https://doi.org/10.12989/eas.2012.3.6.889.
  21. Hou, H., Chou, C.C., Zhou, J., Wu, M., Qu, B., Ye, H., Liu, H. and Li, J. (2016), "Cyclic tests of steel frames with composite lightweight infill walls", Earthq. Struct., 10(1), 163-178. https://doi.org/10.12989/eas.2016.10.1.163.
  22. Hu, Y., Zhao, J., Zhang, D. and Zhang, Y. (2018), "Seismic risk assessment of concrete-filled double-skin steel tube/moment-resisting frames", Earthq. Struct., 14(3), 249-259. https://doi.org/10.12989/eas.2018.14.3.249.
  23. Kanchanadevi, A. and Ramanjaneyulu, K. (2019), "Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading", Earthq. Struct., 16(2), 235-251. https://doi.org/10.12989/eas.2019.16.2.235.
  24. Lai, M.H. and Ho, J.C.M. (2016), "A theoretical axial stress-strain model for circular concrete-filled-steel-tube columns". Eng Struct., 125, 124-143. https://doi.org/10.1016/j.engstruct.2016.06.048.
  25. Lam, D., Gardner, L. and Burdett, M. (2010), "Behaviour of axially loaded concrete filled stainless steel elliptical stub columns", Advan. Struct. Eng., 13(3), 493-500. https://doi.org/10.1260/1369-4332.13.3.493.
  26. Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H. and Choi, S.M. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Construct. Steel Res., 67(1), 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003.
  27. Li, G., Chen, B., Yang, Z. and Feng, Y. (2018), "Experimental and numerical behaviour of eccentrically loaded high strength concrete filled high strength square steel tube stub columns", Thin-Walled Struct., 127, 483-499. https://doi.org/10.1016/j.tws.2018.02.024.
  28. Li, Z., Gao, J., Xu, J. and Du, G. (2019), "Stress monitoring and impact bearing capacity of circular concrete-filled steel tubular short columns under axial impact loads", Advan. Struct. Eng., 23(3), 565-577. https://doi.org/10.1177/1369433219876205.
  29. Liu, Z.Q., Xue, J.Y., Zhao, H.T. and Gao, L. (2014), "Cyclic test for solid steel reinforced concrete frames with special-shaped columns", Earthq. Struct., 7(3), 317-331. https://doi.org/10.12989/eas.2014.7.3.317.
  30. Lu, X., Urukap, T.H., Li, S. and Lin, F. (2012), "Seismic behavior of interior RC beam-column joints with additional bars under cyclic loading", Earthq. Struct, 3(1), 37-57. https://doi.org/10.12989/eas.2012.3.1.037.
  31. Nie, J.G., Wang, Y.H. and Fan, J.S. (2012), "Experimental study on seismic behavior of concrete filled steel tube columns under pure torsion and compression-torsion cyclic load", J. Construct. Steel Res., 79(Supplement C), 115-126. https://doi.org/10.1016/j.jcsr.2012.07.029.
  32. Nie, J.G., Wang, Y.H. and Fan, J.S. (2013), "Experimental research on concrete filled steel tube columns under combined compression-bending-torsion cyclic load", Thin-Walled Struct., 67(Supplement C), 1-14. https://doi.org/10.1016/j.tws.2013.01.013.
  33. Ouyang, Y. and Kwan, A.K.H. (2018), "Finite element analysis of square concrete-filled steel tube (CFST) columns under axial compressive load", Eng. Struct., 156, 443-459. https://doi.org/10.1016/j.engstruct.2017.11.055.
  34. Ouyang, Y., Kwan, A.K.H., Lo, S.H. and Ho, J.C.M. (2017), "Finite element analysis of concrete-filled steel tube (CFST) columns with circular sections under eccentric load", Eng. Struct., 148, 387-398. https://doi.org/10.1016/j.engstruct.2017.06.064.
  35. Prion, H.G.L. and Boehme, J. (1994), "Beam-column behaviour of steel tubes filled with high strength concrete", Canadian J. Civil Eng., 21(2), 207-218. https://doi.org/10.1139/l94-024.
  36. Qu, H., Li, G., Chen, S., Sun, J. and Sozen, M.A., (2011), "Analysis of circular concrete-filled steel tube specimen under lateral impact", Advan. Struct. Eng., 14(5), 941-951. https://doi.org/10.1260/1369-4332.14.5.941.
  37. Ren, Q.X., Zhou, K., Hou, C., Tao, Z. and Han, L.H., (2018), "Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments", Thin-Walled Struct., 124, 291-302. https://doi.org/10.1016/j.tws.2017.12.006.
  38. Silva, A., Jiang, Y., Castro, J.M., Silvestre, N. and Monteiro, R. (2017), "Monotonic and cyclic flexural behaviour of square/rectangular rubberized concrete-filled steel tubes", J. Construct. Steel Res., 139, 385-396. https://doi.org/10.1016/j.jcsr.2017.09.006.
  39. Skalomenos, K.A., Hayashi, K., Nishi, R., Inamasu, H. and Nakashima, M. (2016), "Experimental behavior of concrete-filled steel tube columns using ultrahigh-strength steel", J. Struct. Eng., 142(9), 04016057. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001513.
  40. Song, T.Y., Han, L.H. and Yu, H.X. (2010), "Concrete filled steel tube stub columns under combined temperature and loading", J. Construct. Steel Res., 66(3), 369-384. https://doi.org/10.1016/j.jcsr.2009.10.010.
  41. Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin-Walled Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006.
  42. Tao, Z., Uy, B., Liao, F.Y. and Han, L.H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Construct. Steel Re., 67(11), 1719-1732. https://doi.org/10.1016/j.jcsr.2011.04.012.
  43. Wang, J. and Li, B. (2017), "Cyclic testing of square CFST frames with ALC panel or block walls", J. Construct. Steel Res., 130, 264-279. https://doi.org/10.1016/j.jcsr.2016.12.006.
  44. Wang, J. and Sun, Q. (2018), "Cyclic testing of Q690 circular high-strength concrete-filled thin-walled steel tubular columns", Advan. Struct. Eng., 22(2), 444-458. https://doi.org/10.1177/1369433218790769.
  45. Wang, Y.H., Wang, W. and Chen, J. (2018), "Seismic behavior of steel tube confined RC columns under compression-bending-torsion combined load", J. Construct. Steel Res., 143, 83-96. https://doi.org/10.1016/j.jcsr.2017.12.025.
  46. Wei, J.G., Zhou, J., Huang, J.N., Yuan, H.H. and Huang, Q.W. (2019), "Experimental study on the cyclic behavior of ultra high performance concrete-filled steel tube beam-columns", Advan. Struct. Eng., 969-978. https://doi.org/10.1177/1369433219886456.
  47. Xiang, X., Cai, C.S., Zhao, R. and Peng, H. (2016), "Numerical analysis of recycled aggregate concrete-filled steel tube stub columns", Advan. Struct. Eng., 19(5), 717-729. https://doi.org/10.1177/1369433215618270.
  48. Xiao, Y., Shan, J., Zheng, Q., Chen, B. and Shen, Y. (2009), "Experimental studies on concrete filled steel tubes under high strain rate loading", J. Mater. Civil Eng., 21(10), 569-577. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(569).
  49. Yang, Y.F. and Han, L.H. (2012), "Concrete filled steel tube (CFST) columns subjected to concentrically partial compression", Thin-Walled Struct., 50(1), 147-156. https://doi.org/10.1016/j.tws.2011.09.007.
  50. Yang, Y.F., Han, L.H. and Zhu, L.T. (2009), "Experimental performance of recycled aggregate concrete-filled circular steel tubular columns subjected to cyclic flexural loadings", Advan. Struct. Eng., 12(2), 183-194. https://doi.org/10.1260/136943309788251605.
  51. Yin, J., Zha, X.X. and Li, L.Y. (2006), "Fire resistance of axially loaded concrete filled steel tube columns", J. Construct. Steel Res., 62(7), 723-729. https://doi.org/10.1016/j.jcsr.2005.11.011.
  52. Yuan, F., Chen, M., Huang, H., Xie, L. and Wang, C. (2018), "Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack: Test simulation", Thin-Walled Struct., 122, 90-101. https://doi.org/10.1016/j.tws.2017.10.005.
  53. Yuan, F., Huang, H. and Chen, M. (2019), "Behaviour of square concrete-filled stiffened steel tubular stub columns under axial compression", Advan. Struct. Eng., 22(8), 1878-1894. https://doi.org/10.1177/1369433218819584.
  54. Zhang, Y.T., Shan, B. and Xiao, Y. (2019), "Axial impact behaviors of stub concrete-filled square steel tubes", Advan. Struct. Eng., 22(11), 2490-2503. https://doi.org/10.1177/1369433219845094.