References
- Abdollahzadeh, G., Nemati, M. and Avazeh, M. (2016), "Probability assessment and risk management of progressive collapse in strategic buildings facing blast loads", Civil Eng. Infrastruct. J., 49(2), 327-338. https://dx.doi.org/10.7508/ceij.2016.02.009.
- ASCE 7-10 (2010), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA.
- Ashkezari, G.D. (2018), "A performance based strategy for design of steel moment frames under blast loading", Earthq. Struct., 15(2), 155-164. https://doi.org/10.12989/eas.2018.15.2.155.
- Bai, J., Yang, T. and Ou, J. (2018), "Improved performance-based plastic design for RC moment resisting frames: Development and a comparative case study", Int. J. Struct. Stab. Dyn., 18(4), 1850050. https://doi.org/10.1142/S0219455418500505.
- Bisch, P., Carvalho, E., Degee, H., Fajfar, P., Fardis, M., Franchin, P. and Tsionis, G. (2012), Eurocode 8: Seismic Design of Buildings Worked Examples. Luxembourg: Publications Office of the European Union.
- Brode, H.L. (1955), "Numerical solutions of spherical blast waves", J. Appl. Phys., 26(6), 766-775. https://doi.org/10.1063/1.1722085.
- Bulson, P.S. (2002), Explosive Loading of Engineering Structures, CRC Press, London.
- Chen, W. and Hao, H. (2013), "Numerical study of blast-resistant sandwich panels with rotational friction dampers", Int. J. Struct. Stab. Dyn., 13(06), 1350014. https://doi.org/10.1142/S0219455413500144.
- Clemente, P., Bongiovanni, G., Buffarini, G., Saitta, F., Castellano, M.G. and Scafati, F. (2019), "Effectiveness of HDRB isolation systems under low energy earthquakes", Soil Dyn. Earthq. Eng., 118, 207-220. https://doi.org/10.1016/j.soildyn.2018.12.018.
- Coffield, A. and Adeli, H. (2014), "An investigation of the effectiveness of the framing systems in steel structures subjected to blast loading", J. Civ. Eng. Manag., 20(6), 767-777. https://doi.org/10.3846/13923730.2014.986667.
- Coffield, A. and Adeli, H. (2016), "Irregular steel building structures subjected to blast loading", J. Civ. Eng. Manag., 22(1), 17-25. https://doi.org/10.3846/13923730.2015.1073172.
- Constantinou, M., Whittaker, A., Fenz, D. and Apostolakis, G. (2007), "Seismic isolation of bridges", University at Buffalo, New York.
- Constantinou, M.C., Whittaker, A., Kalpakidis, Y., Fenz, D. and Warn, G.P. (2006), "Performance of seismic isolation hardware under service and seismic loading", University at Buffalo, New York.
- Dadkhah, H. and Mohebbi, M. (2019), "Performance assessment of an earthquake-based optimally designed fluid viscous damper under blast loading", Advan. Struct. Eng., 22(14), 3011-3025. https://doi.org/10.1177%2F1369433219855905. https://doi.org/10.1177%2F1369433219855905
- De Luca, A. and Guidi, L.G. (2020), "Base isolation issues in Italy: Integrated architectural and structural designs", Soil Dyn. Earthq. Eng., 130, 105912. https://doi.org/10.1016/j.soildyn.2019.105912.
- Erdik, M., U lker, O ., Sadan, B. and Tuzun, C. (2018), "Seismic isolation code developments and significant applications in Turkey", Soil Dyn. Earthq. Eng., 115, 413-437. https://doi.org/10.1016/j.soildyn.2018.09.009.
- Eurocode 8 (2005), Design of Structures for Earthquake Resistance-part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels.
- Fan, B., Zhang, X.a., Abdulhadi, M. and Wang, Z. (2020), "Generic optimization, energy analysis, and seismic response study for MSCSS with rubber bearings", Earthq. Struct., 19(5), 347-359. https://doi.org/10.12989/eas.2020.19.5.347.
- FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, American Society of Civil Engineers, Washington, D.C.
- Gardoni, P. and Trejo, D. (2013), "Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation", Earthq. Struct., 4(5), 527-555. https://doi.org/10.12989/eas.2013.4.5.527.
- Goel, S.C. and Chao, S.H. (2008), Performance-Based Plastic Design: Earthquake-Resistant Steel Structures, International Code Council, Washington, D.C.
- Islam, A., Jumaat, M.Z. and Ahmmad, R. (2015), "Retrofitting of vulnerable RC structures by base isolation technique", Earthq. Struct., 9(3), 603-623. https://doi.org/10.12989/eas.2015.9.3.603.
- Iwabe, N., Takayama, M., Kani, N. and Wada, A. (2000), "Experimental study on the effect of tension for rubber bearings", 12th World Conference on Earthquake Engineering (WCEE), Auckland, New Zealand, January.
- Jangid, R. (2008), "Equivalent linear stochastic seismic response of isolated bridges", J. Sound Vib., 309(3-5), 805-822. https://doi.org/10.1016/j.jsv.2007.07.071.
- Jangid, R. (2010), "Stochastic response of building frames isolated by lead-rubber bearings", Struct. Control Health Monit., 17(1), 1-22. https://doi.org/10.1002/stc.266.
- Kangda, M.Z. and Bakre, S. (2018), "The effect of LRB parameters on structural responses for blast and seismic loads", Arab. J. Sci. Eng., 43(4), 1761-1776. https://doi.org/10.1007/s13369-017-2732-7.
- Kangda, M.Z. and Bakre, S. (2019), "Positive-Phase Blast Effects on Base-Isolated Structures", Arab. J. Sci. Eng., 44(5), 4971-4992. https://doi.org/10.1007/s13369-018-3667-3.
- Kangda, M.Z. and Bakre, S. (2020), "Performance evaluation of moment-resisting steel frame buildings under seismic and blast-induced vibrations", J. Vib. Eng. Technol., 8(1), 1-26. https://doi.org/10.1007/s42417-018-0027-2.
- Khan, S., Saha, S.K., Matsagar, V.A. and Hoffmeister, B. (2017), "Fragility of steel frame buildings under blast load", J. Perform. Constr. Fac., 31(4), 04017019. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001016.
- Khansefid, A., Maghsoudi-Barmi, A. and Khaloo, A. (2019), "Seismic protection of LNG tanks with reliability based optimally designed combined rubber isolator and friction damper", Earthq. Struct., 16(5), 523-532. https://doi.org/10.12989/eas.2019.16.5.523.
- Kiran, K. and Kori, J. (2019), "Blast mitigation of low rise structure by using control devices", VTU J. Eng. Sci. Manage., 1(3), 22-28. http://ijesm.vtu.ac.in/index.php/IJESM/article/view/86.
- Li, Y., Lv, Z. and Wang, Y. (2020), "Blast response of aluminum foam sandwich panel with double V-shaped face plate", Int. J. Impact. Eng., 144, 103666. https://doi.org/10.1016/j.ijimpeng.2020.103666.
- Liu, Y., Liao, Z., Xue, Y., Li, Z., Shao, L. and Tang, D. (2020), "Experimental and theoretical analysis for isolation performance of new combined isolation devices under blast loading", Advan. Civ. Eng., 2020, 8425785. https://doi.org/10.1155/2020/8425785.
- Losanno, D., Hadad, H. and Serino, G. (2019), "Design charts for eurocode-based design of elastomeric seismic isolation systems", Soil Dyn. Earthq. Eng., 119, 488-498. https://doi.org/10.1016/j.soildyn.2017.12.017.
- Mahmoud, S. (2014), "Blast load induced response and the associated damage of buildings considering SSI", Earthq. Struct., 7(3), 231-252. http://dx.doi.org/10.12989/eas.2014.7.3.349.
- Mahmoud, S. (2019), "Blast-load-induced interaction between adjacent multi-story buildings", Earthq. Struct., 17(1), 17-29. https://doi.org/10.12989/eas.2019.17.1.017.
- Markou, A.A., Stefanou, G. and Manolis, G.D. (2019), "Stochastic energy measures for hybrid base isolation systems", Soil Dyn. Earthq. Eng., 119, 454-470. https://doi.org/10.1016/j.soildyn.2018.01.027.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "OpenSees command language manual", University of California, Berkeley, CA.
- Mills, C. (1987), "The design of concrete structure to resist explosions and weapon effects", Proceedings of the 1st Int. Conference on Concrete for Hazard Protections, Edinburgh.
- Miyamoto, H.K. and Taylor, D. (2000), "Structural control of dynamic blast loading", Structures Congress 2000, Philadelphia, Pennsylvania, May.
- Mohebbi, M. and Dadkhah, H. (2017), "Performance of semi-active base isolation systems under external explosion", Int. J. Struct. Stab. Dyn., 17(10), 1750112. http://dx.doi.org/10.1142/S0219455418500256.
- Mohebbi, M. and Dadkhah, H. (2019), "Optimal smart base isolation system for multiple earthquakes", Int. J. Optim. Civil. Eng., 9(1), 19-37. http://ijoce.iust.ac.ir/article-1-373-en.html.
- Mohebbi, M. and Dadkhah, H. (2020), "Optimal design of base isolation system under blast loading", Int. J. Optim. Civil. Eng., 10(1), 101-115. http://ijoce.iust.ac.ir/article-1-424-en.html.
- Monir, H.S. (2013), "Flexible blast resistant steel structures by using unidirectional passive dampers", J. Constr. Steel Res., 90, 98-107. https://doi.org/10.1016/j.jcsr.2013.07.025.
- Murase, M., Tsuji, M. and Takewaki, I. (2013), "Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection", Earthq. Struct., 4(6), 649-670. http://dx.doi.org/10.12989/eas.2013.4.6.649.
- Nagarajaiah, S. and Sun, X. (2001), "Base-isolated FCC building: impact response in Northridge earthquake", J. Struct. Eng., 127(9), 1063-1075. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1063).
- Nagarajaiah, S. and Xiaohong, S. (2000), "Response of base-isolated USC hospital building in Northridge earthquake", J. Struct. Eng., 126(10), 1177-1186. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1177).
- National Research Council (2010), Technologies and Approaches to Reducing the Fuel Consumption of Medium-and Heavy-Duty Vehicles, National Academies Press, Washington, D.C.
- Naumyenko, I. and Petrovsky, I. (1956), The Shock Wave of A Nuclear Explosion, BOEH, CCCP, Moscow.
- Oliveto, N.D., Markou, A.A. and Athanasiou, A. (2019), "Modeling of high damping rubber bearings under bidirectional shear loading", Soil Dyn. Earthq. Eng., 118, 179-190. https://doi.org/10.1016/j.soildyn.2018.12.017.
- Pigouni, A.E., Castellano, M.G., Infanti, S. and Colato, G.P. (2020), "Full-scale dynamic testing of pendulum isolators (Curved surface sliders)", Soil Dyn. Earthq. Eng., 130, 105983. https://doi.org/10.1016/j.soildyn.2019.105983.
- Priestley, M.N., Calvi, G.M. and Kowalsky, M.J. (2007), Displacement-Based Seismic Design Of Structures, IUSS press, Pavia, Italy.
- Reddy, N.O. and Manchalwar, A. (2019), "Performance of moment resisting RC building equipped with X-plate damper under seismic and blast loading", Int. J. Innov. Technol. Explor. Eng., 9(2), 2758-2762. https://doi.org/10.35940/ijitee.b6614.129219.
- Reddy, N.O. and Manchalwar, A. (2020), "Performance of 2-D Frame Equipped With Base isolation System under Dynamic Loadings", 2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy, Hyderabad, India.
- Robinson, W. and Tucker, A. (1976), "A lead-rubber shear damper", Bull. N.Z. Natl. Soc. Earthqu. Eng., 4, 251-259.
- Robinson, W.H. (1982), "Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes", Earthq. Eng. Struct. Dyn., 10(4), 593-604. https://doi.org/10.1002/eqe.4290100408.
- Sahu, D.K. and Patro, S.K. (2018), "Performance of energy dissipation devices in mitigation of blast-induced vibration of buildings", ASCE India Conference 2017, New Delhi, India. https://doi.org/10.1061/9780784482032.047.
- Shi, Y. and Stewart, M.G. (2015), "Damage and risk assessment for reinforced concrete wall panels subjected to explosive blast loading", Int. J. Impact. Eng., 85, 5-19. https://doi.org/10.1016/j.ijimpeng.2015.06.003.
- Shoji, G., Saito, K., Kameda, T., and Fueki, T.A. (2004), "Seismic performance of a laminated rubber bearing under tensile axial loading", Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
- Sun, G., Zhang, J., Li, S., Fang, J., Wang, E. and Li, Q. (2019), "Dynamic response of sandwich panel with hierarchical honeycomb cores subject to blast loading", Thin-Walled Struct., 142, 499-515. https://doi.org/10.1016/j.tws.2019.04.029.
- Tetougueni, C.D., Zampieri, P. and Pellegrino, C. (2020), "Structural performance of a steel cable-stayed bridge under blast loading considering different stay patterns", Eng. Struct., 219, 110739. https://doi.org/10.1016/j.engstruct.2020.110739.
- Tyler, R. and Robinson, W. (1984), "High-strain tests on lead-rubber bearings for earthquake loadings", Earthq. Eng., 17(2), 90-105.
- UFC 3-340-02 (2008), "Structures to resist the effects of accidental explosions", US Department of Defense, U.S.A.
- Wang, Y. and Liew, J.R. (2015), "Blast performance of water tank with energy absorbing support", Thin-Walled Struct., 96, 1-10. https://doi.org/10.1016/j.tws.2015.07.022.
- Warn, G.P. and Whittaker, A.S. (2006), "A study of the coupled horizontal-vertical behavior of elastomeric and lead-rubber seismic isolation bearings", MCEER-06-0011; State University of New York, New York, U.S.A.
- Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer Jr, B.F., Quinn, D.D. and Bergman, L.A. (2013), "Experimental blast testing of a large 9-story structure equipped with a system of nonlinear energy sinks", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vienna, Austria, August.
- Yussof, M.M., Silalahi, J.H., Kamarudin, M.K., Chen, P.-S. and Parke, G.A. (2020), "Numerical Evaluation of Dynamic Responses of Steel Frame Structures with Different Types of Haunch Connection Under Blast Load", Appl. Sci., 10(5), 1815. https://doi.org/10.3390/app10051815.
- Zhang, L., Chen, L., Fang, Q. and Zhang, Y.D. (2016), "Mitigation of blast loadings on structures by an anti-blast plastic water wall", J. Cent. South. Univ., 23(2), 461-469. https://doi.org/10.1007/s11771-016-3091-3.
- Zhang, R. and Phillips, B.M. (2015), "Performance and protection of base-isolated structures under blast loading", J. Eng. Mech., 142(1), 04015063. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000974.
- Zordan, T., Liu, T., Briseghella, B. and Zhang, Q. (2014), "Improved equivalent viscous damping model for base-isolated structures with lead rubber bearings", Eng. Struct., 75, 340-352. https://doi.org/10.1016/j.engstruct.2014.05.044.