DOI QR코드

DOI QR Code

Safety estimation of check dam in Muju region according to debris yield

토사유출에 따른 무주지역 사방댐의 안전성 평가

  • Kwon, Hyuk Jae (Department of Civil Engineering, Cheongju University) ;
  • Kim, Hyeong Gi (Department of Civil Engineering, Cheongju University)
  • 권혁재 (청주대학교 토목공학과) ;
  • 김형기 (청주대학교 토목공학과)
  • Received : 2021.09.03
  • Accepted : 2021.10.01
  • Published : 2021.11.30

Abstract

In this study, the probability of exceeding capacity for 4 check dams in Muju mountain region have been estimated. From the results, optimum design of check dam and safety according to wild fire have been discussed. Reliability model has been established by using MSDPM for calculating debris yield to estimate the probability of exceeding capacity of check dam. Probability of exceeding capacity for 4 check dams has been estimated according to maximum rainfall intensity of return periods (10year, 50year, 100year, and 200year). It was found that 1 check dam of Samga-ri basin and 1 check dam of Jeungsan-ri basin were designed by overestimation and 61% and 47% of capacity should be reduced, respectively. Furthermore, probability of exceeding capacity according to burned area has been estimated and compared. It was found that check dam of Sanga-ri basin is the weakest for the wild fire effect in this study area.

본 연구에서는 전라북도 무주군 산지 유역의 사방댐 4개소를 대상으로 용량초과확률을 산정하였으며, 이를 통해 국내 사방댐 설계의 적정성과 산불피해에 따른 안전성을 분석하였다. 용량초과확률을 산정하기 위한 신뢰성 모형을 구축하였고 토사유출량 산정에는 MSDPM을 사용하였다. 재현기간(10년, 50년, 100년, 200년)별 강우강도를 사용하여 사방댐의 용량초과확률을 산정하여 비교 분석하였다. 그 결과 무주군 삼가리 유역의 사방댐 1개소와 증산리 유역의 사방댐 1개소는 과대설계 되었다고 판단되며 각각 사방댐의 용량을 61%, 47% 축소해도 안전할 것으로 판단된다. 또한 산불피해면적에 대한 사방댐의 용량초과 확률을 산정해 비교분석 하였으며 연구대상 유역에서 산불로 인한 영향이 가장 큰 곳은 삼가리 유역의 사방댐인 것으로 확인되었다.

Keywords

References

  1. Ang, A., and Tang, W.H. (1984). Probability concepts in engineering planning and design. John Wiley and Sons, Inc. NY, U.S.
  2. Choi, H. (2016). "Analysis of the adequacy check dam according to soil loss using RUSLE." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 5, pp. 515-524. https://doi.org/10.7848/KSGPC.2016.34.5.515
  3. Frankel, E.G. (1988). System reliability and risk analysis. Klume Academic Publishers, Springer, Germany.
  4. Jee, Y.K., Park, I.C., and Kim, B.S. (2017). "Sediment yield estimation of the erosion control dam basin and analysis of watershed characterization using RUSLE." Journal of the Korean Society of Hazard Mitigation, Vol. 17, No. 1, pp. 123-130. https://doi.org/10.9798/KOSHAM.2017.17.1.123
  5. Kwon, H.J., and Lee, C.E. (2011). "Probability of pipe breakage regarding transient flow in a small pipe network." Annals of Nuclear Energy, Vol. 38, No. 2-3, pp. 558-563. https://doi.org/10.1016/j.anucene.2010.09.026
  6. Lee, J.H., Chun, K.W., Lee, S.M., Park, J.H., Kim, B.G., Kim, S.U., and Seo, J.I. (2013). "A study on the safety inspection of erosion control facilities (I): In case of check dams located in the Gangwon region." Journal of Forest Science, Vol. 29, No. 3, pp. 226-236. https://doi.org/10.7747/JFS.2013.29.3.226
  7. Modarres, M., Kaminskiy, M., and Kritsov, V. (1999). Reliability engineering and risk analysis. Marcel Dekker Inc., NY, U.S.
  8. Pak, J.H. (2005). A real-time debris prediction model (USCDPM) incorporating wildfire and subsequent storm events. Ph.D. Dissertation, University of Southern California, Los Angeles, CA, U.S.
  9. Pak, J.H., and Lee, J.J. (2008). "A statistical sediment yield prediction model incorporating the effect of fires and subsequent storm events." Journal of the American Water Resources Association, Vol. 44, No. 3, pp. 689-699. https://doi.org/10.1111/j.1752-1688.2008.00199.x
  10. Pak, J.H., Kou, Z., Kwon, H.J., and Lee, J.J. (2009). "Predicting debris yield from burned watersheds: Comparison of statistical and artificial neural network models." Journal of the American Water Resources Association, Vol. 45, No. 1, pp. 210-223. https://doi.org/10.1111/j.1752-1688.2008.00272.x