DOI QR코드

DOI QR Code

Effect of Pseudomonas aeruginosa Strain ZK Biofilm on the Mechanical and Corrosion Behavior of 316L Stainless Steel and α-brass

  • Farooq, A. (Corrosion Control Research Cell, Institute of Metallurgy and Materials Engineering, Faculty of Chemical and Materials Engineering, University of the Punjab) ;
  • Zubair, M. (Corrosion Control Research Cell, Institute of Metallurgy and Materials Engineering, Faculty of Chemical and Materials Engineering, University of the Punjab) ;
  • Wadood, H.Z. (Department of Biology, Lahore Garision University) ;
  • Deen, K.M. (Corrosion Control Research Cell, Institute of Metallurgy and Materials Engineering, Faculty of Chemical and Materials Engineering, University of the Punjab)
  • Received : 2020.12.07
  • Accepted : 2021.04.30
  • Published : 2021.11.28

Abstract

This research work aims to investigate the effect of the aerobic bacterium, Pseudomonas aeruginosa on the mechanical and electrochemical properties of the 316L stainless steel and α-brass. These properties of both the alloys were determined after 7 days of exposure to the controlled and inoculated media at 37℃. The microstructural and electrochemical test results revealed the deleterious effects of Pseudomonas aeruginosa. After exposure to the inoculated medium, the scanning electron microscopy (SEM) results showed the larger pitting and formation of relatively dense biofilm on α-brass compared to 316L stainless steel. The tensile strength and hardness of 316L stainless steel were slightly affected after exposure to the controlled and inoculated media. After exposure to the controlled medium and inoculated media, the tensile strength of the α-brass was least affected but a significant decrease in the hardness (from 165 HV to 124 HV) was observed due to the severe attack induced by the Pseudomonas aeruginosa. Similarly, the open-circuit potential of the 316L stainless steel in the inoculated medium was measured to be less active (-410 mV vs Ag/AgCl) than α-brass (-550 mV vs Ag/AgCl). In the inoculated medium, potentiodynamic polarization curves confirmed the severe attack of Pseudomonas aeruginosa on α-brass (7.15 × 10-2 mm/year) compared to 316L stainless steel which registered a corrosion rate of 5.14 × 10-4 mm/year.

Keywords

References

  1. R. Jia, T. Unsal, D. Xu, Y. Lekbach, T. Gu, Int. Biodeterior. Biodegradation., 2019, 137, 43.
  2. J. Morales, P. Esparza, S. Gonzalez, R. Salvarezza, M.P. Arevalo, Corros. Sci., 1993, 34(9),1531-1540. https://doi.org/10.1016/0010-938X(93)90246-D
  3. M. Moradi, Z. Song, L. Yang, J. Jiang, J. He, Corros. Sci., 2014, 84, 103-112. https://doi.org/10.1016/j.corsci.2014.03.018
  4. R. Jia, J. L. Tan, P. Jin, D. J. Blackwood, D. Xu, T. Gu, Corros. Sci., 2018, 130, 1-11. https://doi.org/10.1016/j.corsci.2017.10.023
  5. R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Corros. Sci., 2017, 127, 1-9. https://doi.org/10.1016/j.corsci.2017.08.007
  6. N. Aimeur, K. Houali, L. Hamadou, N. Benbrahim, A. Kadri, Corros. Eng. Sci. Technol., 2015, 50(8), 579-588. https://doi.org/10.1179/1743278215Y.0000000022
  7. J. Jan-Roblero, J. M. Romero, M. Amaya, S. Le Borgne, Appl. Microbiol. Biotechnol., 2004, 64(6), 862-867. https://doi.org/10.1007/s00253-004-1613-7
  8. D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, K. Yang, Bioelectrochemistry, 2017, 113, 1-8. https://doi.org/10.1016/j.bioelechem.2016.08.001
  9. E. Hamzah, M. Z. Hussain, Z. Ibrahim, A. Abdolahi, Corros. Eng. Sci. Technol., 2013, 48(2), 116-120. https://doi.org/10.1179/1743278212Y.0000000052
  10. B. J. Little, P. A. Wagner, F. B. Mansfeld, NACE International, 1997.
  11. H. Luo, H. Su, C. Dong, X. Li, Appl. Surf. Sci., 2017, 400, 38-48. https://doi.org/10.1016/j.apsusc.2016.12.180
  12. H. Z. Wadood, A. Rajasekar, Y. P. Ting, A. N. Sabari, Arab J. Sci. Eng., 2015, 40(7), 1825-1836. https://doi.org/10.1007/s13369-015-1590-4
  13. M. A. Almomani, M. H. Nemrat, J. Alloys Compd., 2016, 679, 104-114. https://doi.org/10.1016/j.jallcom.2016.04.006
  14. L. Yohai, M. Vazquez, M.B. Valcarce, Corr. Sci., 2011, 53(3), 1130-1136 https://doi.org/10.1016/j.corsci.2010.12.005
  15. J. Morales, G. T. Fernandez, P. Esparza, S. Gonzalez, R. C. Salvarezza, A. J. Arvia, Corros. Sci., 1995, 37, 211. https://doi.org/10.1016/0010-938X(94)00108-I
  16. M. V. Rylkina, Y. I. Kuznetsov, M. V. Kalashnikova, M. A. Eremina, Prot. Met., 2002, 38(4), 387-393.
  17. M. B. Valcarce, S. R. de Sanchez, M. Vazquez, Corros. Sci., 2005, 47(3) ,795-809. https://doi.org/10.1016/j.corsci.2004.07.013
  18. T. Kosec, I. Milosev, B. Pihlar, Appl. Surf. Sci., 2007, 253(22), 8863-8873. https://doi.org/10.1016/j.apsusc.2007.04.083
  19. S. J. Yuan, A. M. Choong, S. O. Pehkonen, Corr. Sci., 2007, 49(12), 4352-4385. https://doi.org/10.1016/j.corsci.2007.04.009
  20. D. Xu, E. Zhou, Y. Zhao, H. Li, Z Liu, D. Zhang, K. Yang, J. Mater. Sci. Technol., 2018, 34(8), 1325-1336. https://doi.org/10.1016/j.jmst.2017.11.025
  21. X. Zhao, C. Yan, J. Shao, J. Yang, J. Liu, D. Sun, S. Wang, Int. J. Electrochem. Sci., 2019, 14, 6468-6477.
  22. ASTM E8, ASTM International, 2016.
  23. A. Harimawan, A. Rajasekar, Y. P. Ting, J. Colloid Interface Sci., 2011, 364(1), 213-218. https://doi.org/10.1016/j.jcis.2011.08.021
  24. G. F., Vander Voort, American Society for Metals, 2004, 9.
  25. A. Farooq, K. M. Deen, I. H. Khan, M. A. Raza, R. Ahmad, A. Salam, W. Haider, Materials Performance, 2014, 53(10), 44-47
  26. K. M. Deen, M. A. Virk, C. I. Haque, R. Ahmad, I. H. Khan, Eng. Fail Anal, 2010, 17(4), 886-893. https://doi.org/10.1016/j.engfailanal.2009.10.023
  27. H. Li, E.Zhou, D.Zhang, D.Xu, J. Xia, C. Yang, H. Feng, Z. Jiang, X. Li, T. Gu, K. Yang, Scientific Reports, 2016, 6(1), 1-12. https://doi.org/10.1038/s41598-016-0001-8
  28. D. R. I. Robert, H. Heidersbach, ASM International, 2003, 13, 70-75.
  29. ASTM G102, ASTM International, 2015.
  30. H. Z. Wadood, A. Rajasekar, A. Farooq, Y. P. Ting, A. N. Sabri, J. Basic Microbiol., 2020, 60(3), 243-252. https://doi.org/10.1002/jobm.201900489
  31. E. Vanhaecke, J. P. Remon, M. Moors, F. Raes, D. D. Rudder, A. V. Peteghem, Appl. Environ. Microbiol., 1990, 56(3), 788. https://doi.org/10.1128/aem.56.3.788-795.1990
  32. N.G. Thompson, J.H. Payer, DC Electrochemical Test Methods, 1998.
  33. K. M. Deen, M. Yousaf, N. Afzal, S. Riaz, S. Naseem, A. Farooq, I. M. Ghauri, Mater. Sci. Technol., 2014, 29(5), 269-274. https://doi.org/10.1179/1753555714Y.0000000150