DOI QR코드

DOI QR Code

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu (Harbin University of Science and Technology) ;
  • Yin, Jinghua (Harbin University of Science and Technology) ;
  • Guo, Ziqiang (School of Architecture, Chang'an University) ;
  • Tian, Shiyi (Zhejiang Post and Telecommunication College, School of Electronic and Communication Engineering) ;
  • Yang, Xu (Harbin University of Science and Technology)
  • Received : 2020.09.22
  • Accepted : 2021.05.31
  • Published : 2021.11.28

Abstract

Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Keywords

Acknowledgement

The authors acknowledge financial support from Natural Science Foundation of China (51502063), China Postdoctoral Science Foundation (2016T90306 and 2015M570301), Natural Science Foundation (E2015064) and Postdoctoral Science Foundation (LBH-TZ0615) of Heilongjiang Province of China, Natural Science Foundation of Heilongjiang Province of China (Geant No.F2017017),and Science Funds for Young Innovative Talents of HUST (201505). National undergraduate innovation and entrepreneurship training program (project No.201910214016 and No.201910214005). Research initiation fund of Hainan University (No. KYQD(ZR)20062). This work is supported by Hei Long Jiang Postdoctoral Foundation (LBH-Z20082).

References

  1. G. Huang, F. Zhang, X. Du, ACS Nano, 2015, 9(2), 1592-1599. https://doi.org/10.1021/nn506252u
  2. W. Hao, S. Chen, Y. Cai, J. Mater. Chem. A, 2014, 2(34), 13801-13804. https://doi.org/10.1039/c4ta02012j
  3. X. Wang, X.L. Wu, Y.G. Guo, Adv. Funct. Mater., 2010, 20(10), 1680-1686. https://doi.org/10.1002/adfm.200902295
  4. N. Venugopal, D.J. Lee, Y.J. Lee, J. Mater. Chem. A, 2013, 1(42), 13164-13170. https://doi.org/10.1039/c3ta13110f
  5. H. Gong, Z. Chen, Y. Fan, Renew. Energ., 2015, 83, 144-150. https://doi.org/10.1016/j.renene.2015.04.004
  6. V. Subramanian, C. Luo, A.M. Stephan, J. Phys. Chem. C, 2007, 111(20), 7527-7531. https://doi.org/10.1021/jp067009t
  7. M. Arulepp, J. Leis, M. Latt, J. Power Sources, 2006, 162(2), 1460-1466. https://doi.org/10.1016/j.jpowsour.2006.08.014
  8. Y. Gogotsi, A. Nikitin, H. Ye, Nat. Mater., 2003, 2(9), 591. https://doi.org/10.1038/nmat957
  9. H. Juan, Carbon, 2010, 48(12), 3599-3606. https://doi.org/10.1016/j.carbon.2010.06.008
  10. W. Chaikittisilp, M. Hu, H. Wang, Chem. Commun., 2012, 48(58), 7259-7261. https://doi.org/10.1039/c2cc33433j
  11. S.Y. Tian, G.X. Zheng, Q. Liu, M.Y. Ren, J.H. Yin, Int. J. Electrochem. Sci., 2019, 14, 9459-9467.
  12. N.L. Torad, R.R. Salunkhe, Y.Q. Li, Chem-Eur. J., 2014, 20(26), 7895-7900. https://doi.org/10.1002/chem.201400089
  13. L. Zhi, Y.S. Hu, B.E. Hamaoui, Adv. Mater., 2008, 20(9), 1727-1731. https://doi.org/10.1002/adma.200702654
  14. Y. Chen, X. Ji, J. Alloy. Compd., 2019, 777, 688-692. https://doi.org/10.1016/j.jallcom.2018.11.037
  15. F. Chen, Y.F. Yuan, L.W. Ye, Mater. Lett., 2019, 237, 213-215. https://doi.org/10.1016/j.matlet.2018.11.124
  16. B. Guo, C. Li, Z.Y. Yuan. J. Phys. Chem. C, 2010, 114, 12805-12817. https://doi.org/10.1021/jp103705q
  17. D. Gu, W. Li, F. Wang, Angew. Chem. Int. Edit., 2015, 54, 7060-7064. https://doi.org/10.1002/anie.201501475
  18. Z.S. Wu, W. Ren, L. Wen, ACS Nano, 2010, 4, 3187-3194. https://doi.org/10.1021/nn100740x
  19. L. Wang, Y. Zheng, X. Wang, ACS Appl. Mater. Inter., 2014, 6, 7117-7125. https://doi.org/10.1021/am406053s
  20. L. Peng, Y. Feng, Y. Bai, J. Mater. Chem. A, 2015, 3, 8825-8831. https://doi.org/10.1039/C5TA01187F
  21. X. Leng, Y. Shao, L. Wu, J. Mater. Chem. A, 2016, 4(26), 10304-10313. https://doi.org/10.1039/C6TA03429B
  22. J. Chen, X.H. Xia, J.P. Tu, J. Mater. Chem., 2012, 22 (30), 15056-15061. https://doi.org/10.1039/c2jm31629c
  23. C.C. Li, Q.H. Li, L.B. Chen, J. Mater. Chem., 2011, 21 (32), 11867-11872. https://doi.org/10.1039/c1jm11328c
  24. D. Kong, J. Luo, Y. Wang, Adv. Funct. Mater., 2014, 24 (24), 3815-3826. https://doi.org/10.1002/adfm.201304206
  25. X. Leng, S. Wei, Z. Jiang, Sci. Rep-UK., 2015, 5, 16629. https://doi.org/10.1038/srep16629