DOI QR코드

DOI QR Code

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Yokoshima, Tokihiko (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Oguma, Yasumasa (Research Organization for Nano and Life Innovation, Waseda University) ;
  • Osaka, Tetsuya (Research Organization for Nano and Life Innovation, Waseda University)
  • 투고 : 2021.01.26
  • 심사 : 2021.03.31
  • 발행 : 2021.11.28

초록

For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

키워드

참고문헌

  1. N. Togasaki, T. Yokoshima, Y. Oguma and T. Osaka, J. Power Sources, 2020, 461, 228168. https://doi.org/10.1016/j.jpowsour.2020.228168
  2. M. S. Wu, C. Y. Lin, Y. Y. Wang, C. C. Wan and C. R. Yang, Electrochimica Acta., 2006, 52(3), 1349-1357. https://doi.org/10.1016/j.electacta.2006.07.036
  3. M. M. Hoque, M. A. Hannan, A. Mohamed and A. Ayob, Renew. sustain. energy rev., 2017, 75, 1363-1385. https://doi.org/10.1016/j.rser.2016.11.126
  4. Y. Kato, K. Kawamoto, R. Kanno and M. Hirayama, Electrochemistry, 2012, 80(10), 749-751. https://doi.org/10.5796/electrochemistry.80.749
  5. T. Osaka, T. Momma, D. Mukoyama, H. Nara, J. Power Sources., 2012, 205, 483-486. https://doi.org/10.1016/j.jpowsour.2012.01.070
  6. V. J. Ovejas and A. Cuadras, Batteries, 2018, 4(3), 43. https://doi.org/10.3390/batteries4030043
  7. C. T. Love, M. B. V. Virji, R. E. Rocheleau and K. E. Swider-Lyons, J. Power Sources., 2014, 266, 512-519. https://doi.org/10.1016/j.jpowsour.2014.05.033
  8. C. T. Love and K. Swider-Lyons, Electrochem Solid State Letters., 2012, 15(4), A53. https://doi.org/10.1149/2.014204esl
  9. H. Nara, D. Mukoyama, T. Yokoshima, T. Momma and T. Osaka, J. Electrochem. Soc., 2015, 163(3), A434. https://doi.org/10.1149/2.0341603jes
  10. D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten and M. Schmidt, J. Electrochem. Soc., 2000, 147(4), 1322. https://doi.org/10.1149/1.1393357
  11. M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider and L. Heider, J. Electrochem. Soc., 1999, 146(4), 1279. https://doi.org/10.1149/1.1391759
  12. M. E. Orazem and B. Tribollet, ChemTexts, 2020, 6(2), 1-9. https://doi.org/10.1007/s40828-019-0096-1
  13. I. A. J. Gordon, S. Grugeon, H. Takenouti, B. Tribollet, M. Armand, C. Davoisne, A. Debart and S. Laruelle, Electrochimica Acta, 2017, 223, 63-73. https://doi.org/10.1016/j.electacta.2016.12.013
  14. T. P. Heins, N. Harms, L. S. Schramm and U. Schroder, Energy Technol., 2016, 4(12), 1509-1513. https://doi.org/10.1002/ente.201600132
  15. T. Momma, M. Matsunaga, D. Mukoyama and T. Osaka, J. Power Sources., 2012, 216, 304-307. https://doi.org/10.1016/j.jpowsour.2012.05.095
  16. T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell and S. Sugihara, Ionics., 2000, 6(1), 92-106. https://doi.org/10.1007/BF02375552
  17. M. Shibuya, T. Nishina, T. Matsue and I. Uchida, J. Electrochem. Soc., 1996, 143(10), 3157-3160. https://doi.org/10.1149/1.1837180
  18. F. Nobili, F. Croce, B. Scrosati and R. Marassi, Chem. Mater., 2001, 13(5), 1642-1646. https://doi.org/10.1021/cm000600x