DOI QR코드

DOI QR Code

기계공학분야 연구자들의 연구데이터 생산과 관리에 관한 연구

A Study on Research Data Creation and Management by Researchers in Mechanical Engineering

  • 박윤미 (한국기계연구원, 이화여자대학교 일반대학원 문헌정보학과 기록관리학전공) ;
  • 김지현 (이화여자대학교 사회과학대학 문헌정보학과)
  • 투고 : 2021.10.19
  • 심사 : 2021.11.15
  • 발행 : 2021.11.30

초록

본 연구는 기계공학 분야 연구자들의 연구데이터 생산과 관리에 대한 인식과 경험을 조사하고 해당 분야의 연구데이터 관리와 서비스를 위한 시사점을 제안하는 것을 목적으로 한다. 국내외 연구기관의 연구데이터 관리 및 서비스에 대해 알아보고, 국내 기계공학 분야 연구기관의 소속 연구자들을 대상으로 심층 면담을 실시하여 '연구데이터, 책임있는 연구수행과 연구윤리 준수, 연구데이터 관리의 효용성 및 효과성, 연구데이터 공유의 가치' 등 4개의 주요범주로 연구데이터 생산과 관리에 대한 인식과 행태를 분석하였다. 기계공학분야 연구데이터 관리와 서비스를 위해서는, 생산과정과 유형, 형태에 대한 데이터 조사를 실시하여 명시적 메타데이터와 암시적 맥락정보의 수집이 필요하며 데이터학술지에 데이터 논문을 출판함으로써 연구실적으로 인정하는 방안을 제안하고 안전한 데이터 관리와 연구자들간의 소통을 지원하는 클라우드 기반 시스템 등의 인프라 마련이 필요하다. 또한 연구 현장의 다양한 관계자들이 조직적 차원의 연구데이터 관리와 서비스에 대한 역할과 책임을 배분하는 것이 중요함을 제언하였다.

This study aimed to examine the perception and experience of researchers in the field of mechanical engineering on research data creation and management, and suggest implications for research data management and services in the field. Research data management and services of domestic and foreign research institutes were investigated, and in-depth interviews were conducted with researchers belonging to domestic mechanical engineering research institutes to analyze the perception and conduction of research data creation and management according to four major categories: "research data, accountable conducting of research and compliance with research ethics, utility and effectiveness of research data management, and the value of sharing research data." To ensure effective research data management and services in mechanical engineering, it is necessary to conduct a data investigation on the process, type, and form of production to collect explicit metadata and implicit contextual information. It is also necessary to propose a plan to recognize research results using the publication of data journals and to prepare infrastructure such as a cloud-based system that supports safe data management and communication between researchers. In addition, it suggests that it is important for various officials in the research field to allocate roles and responsibilities for research data management and services at the organizational level.

키워드

참고문헌

  1. Ahn, Chae-Young & Kim, Jihyun (2020). A Study on the Improvement of Research Records Appraisal Practice of the Government-funded Research Institutions. The Korean Journal of Archival Studies, 66, 105-155. https://doi.org/10.20923/kjas.2020.66.105
  2. Choi, June-Hyock (2014). How to Conduct Mixed Methods in Situation Analysis. Journal of Public Relations, 18(4), 169-186. http://dx.doi.org/10.15814/jpr.2014.18.4.169
  3. Choi, Myung-Seok & Lee, Sang-Hwan (2020). Current Status and Issues of Data Management Plan in Korea. The Journal of the Korea Contents Association, 26(6), 220-229. https://doi.org/10.5392/JKCA.2020.20.06.220
  4. Choi, Myung-Seok, Lee, Seung-Bock, & Lee, Sang-Hwan (2017). Research Data Management of Science and Technology Research Institutes in Korea. The Journal of the Korea Contents Association, 17(12), 117-126. https://doi.org/10.5392/JKCA.2017.17.12.117
  5. Gang, Ju-Yeon (2017). A Study on the Methods for Biotechnology Research Data Management. Master's thesis, Chonbuk National University.
  6. Glesne, Corrine (2017). Becoming Qualitative Researchers: An Introduction (5th edition). New York: Pearson College Div.
  7. Jeong, Ji-Yoon, Lee, Kang-Hun, & Kang, Hye-Won (2020). A Study on Research Data trends through Keyword Network Analysis. 27th Proceedings of the Korean Society for Information Management Conference, 27-32.
  8. Kim, Eun-Jeong & Nam, Tae-Woo (2012). Factor Analysis of Effects on Research Data Collection. Journal of the Korean Society for Information Management, 29(2), 27-44, https://doi.org/10.3743/KOSIM.2012.29.2.027
  9. Kim, Jihyun (2012). A Study on University Researchers' Data Management Practices. Journal of Korean Library and Information Science Society, 43(3), 433-455. http://dx.doi.org/10.16981/kliss.43.3.201209.433
  10. Kwon, Na-Hyun, Lee, Jung-Yeon, & Chung, Eun-Kyung (2012). Understanding Scientific Research Lifecycle: based on Bio- and Nano- Scientists' Research Activities. Journal of the Korean Library and Information Science, 46(3), 103-131. http://dx.doi.org/10.4275/KSLIS.2012.46.3.103
  11. Lee, Mi-Young (2017). A Study on Current Status and Improvement Tasks of Records Classification in Government-funded Research Institutes. The Korean Journal of Archival Studies. 53. 229-259. https://doi.org/10.20923/kjas.2017.53.229
  12. Park, Hyeong-Jeong & Kim, Jihyun (2021). A Study on the Considerations for Data Management Plan Services in University Libraries. Journal of the Korean Biblia Society for Library and Information Science, 32(3), 187-215. https://doi.org/10.14699/kbiblia.2021.32.3.187
  13. Park, Mi-Young, Ahn, In-Ja, & Kim, Jun-Mo (2018). A Study on Use Case of Research Data Sharing in Biotechnology. Journal of the Korean Biblia Society for Library and Information Science, 29(1), 393-416. http://dx.doi.org/10.14699/kbiblia.2018.29.1.393
  14. Park, Mi-Young, Ahn, In-Ja, & Nam, Seung-Joo (2018). A Study on the analysis of Research Data Management and Sharing of Science & Technology Government-funded Research Institutes. Journal of the Korean Biblia Society for Library and Information Science, 29(4), 319-344. http://dx.doi.org/10.14699/kbiblia.2018.29.4.319
  15. Science and ICT (2020). National Research and Development information processing standards. Standards No. 2020-102
  16. Science and ICT (2020). National Research and Development Innovation ACT. Act No. 17343
  17. Shin, Eun-Jung (2018). A Study on Fundamentals of Research Data Co-utilization for Science and Technology. MSIT Research Paper. STEPI.
  18. Shin, Eun-Jung, An, Hyung-Jun, Yang, Hyeon-Chae, Choi, Byong-Sam, Yang, Seung-Woo, Jung, Won-Kyo, & Kim, Soo-Youn (2017). Policy Measures to Promote Open Science in South Korea. Policy Studies, 1-194.
  19. Shin, Eun-Jung, Sohn, Soo-jung, Suh, Ji-Young, & Kim, Yeong-Lin (2019). Considerations for Data Rights in Publicly Funded Research, Policy Studies, 2019(16), 1-216. Science and Technology Policy Institute.
  20. The Korean Association for Public Administration (2001). Public Administration Electronic Dictionary. Available: https://kapa21.or.kr/bbs/dictionary/6626
  21. Yim, Jin-Hee (2010). A Study on the Process of Public Information Seeking and Providing through Accountability Mechanism in Korea. Doctoral dissertation, Yonsei University.
  22. Australia's National Science Agency (2020). CSIRO 2020 Year in Review. Available: https://www.csiro.au/-/media/About/Files/YearInReview2020_WEB.pdf
  23. Borgman, C. L. (2015). Big data, little data, no data: Scholarship in the networked world (1st ed.). Cambridge, MA: MIT Press.
  24. Burgelman, J. C., Pascu, C., Szkuta, K., Von Schomberg, R., Karalopoulos, A., Repanas, K., & Schouppe, M. (2019). Open science, open data, and open scholarship: European policies to make science fit for the twenty-first century. Frontiers in Big Data, 2(43). https://doi.org/10.3389/fdata.2019.00043
  25. Corti, L., Van den Eynden, V., Bishop, L., & Woollard, M. (2020). Managing and Sharing Research Data: A Guide to good Practice (2nd edition). California: SAGE Publications Ltd.
  26. CSIRO (2018). CSIRO Data Access Portal Notes Before Completing the Application. Available: https://www.coretrustseal.org/wp-content/uploads/2018/10/CSIRO-Data-Access-Portal.pdf
  27. CSIRO [n.d.]. CSIRO Data Access Portal. Available: https://data.csiro.au/collections/
  28. Elsevier (2021). Data in Brief. Available: https://www.journals.elsevier.com/data-in-brief
  29. Fecher, B., Friesike, S., & Hebing, M. (2015). What drives academic data sharing? PLoS ONE 10(2): e0118053. https://doi.org/10.1371/journal.pone.0118053
  30. Fernandez-Miranda, S. S., Marcos, M., Peralta, M. E., & Aguayo, F. (2017). The challenge of integrating Industry 4.0 in the degree of mechanical engineering. Procedia Manufacturing, 13, 1229-1236. https://doi.org/10.1016/j.promfg.2017.09.039
  31. Fraunhofer [n.d.]. Fraunhofer-Fordatis. Available: https://fordatis.fraunhofer.de
  32. Fraunhofer [n.d.]. Fraunhofer-Publica. Available: http://publica.fraunhofer.de/starweb/pub09/en/index.htm
  33. Fraunhofer [n.d.]. uber Fraunhofer. Available: https://www.fraunhofer.de
  34. Geo Data Council (2019). 저널 소개. 출처: https://geodata.kr/about/aimScope
  35. Glesne, C. (2017). 질적 연구자 되기 5판. 안혜준 옮김. 서울: 아카데미프레스.
  36. Joo, Y. K. & Kim, Y. (2017). Engineering researchers' data reuse behaviours: a structural equation modelling approach. The Electronic Library, 35(6), 1141-1161. https://doi.org/10.1108/EL-08-2016-0163
  37. Kim, J. (2020). An analysis of data paper templates and guidelines: types of contextual information described by data journals. Science Editing, 7(1), 16-23. https://doi.org/10.6087/kcse.185
  38. KISTI, '제1회 과학기술정보포럼' 개최 (2019. 5. 22.). 대전일보, 출처: http://www.daejonilbo.com/news/newsitem.asp?pk_no=1370586
  39. Kowalczyk, S. & Shankar, K. (2011). Data sharing in the sciences. Annual Review of Information Science and Technology, 45(1), 247-294. https://doi.org/10.1002/aris.2011.1440450113
  40. Kurata, K., Matsubayashi, M., & Mine, S. (2017). Identifying the complex position of research data and data sharing among researchers in natural science. Sage Open, 7(3), https://journals.sagepub.com/doi/pdf/10.1177/2158244017717301
  41. Mallasvik, M. L. & Martins, J. T. (2020). Research data sharing behaviour of engineering researchers in Norway and the UK: uncovering the double face of Janus. Journal of Documentation, 77(2), 576-593. https://doi.org/10.1108/JD-08-2020-0135
  42. Muller, J. M., Veile, J. W., & Voigt, K.-I. (2020). Prerequisites and incentives for digital information sharing in Industry 4.0 - an international comparison across data types. Computers & Industrial Engineering, 148, 106733. https://doi.org/10.1016/j.cie.2020.106733
  43. NAA (2020). Records Disposal Authority CSIRO. 73-80. Available: https://www.naa.gov.au/sites/default/files/2019-12/agency-ra-2002-04926193.pdf
  44. NHMRC (2019). Management of Data and Information in Research: A guide supporting the Australian Code for the Responsible Conduct of Research. Available: https://www.nhmrc.gov.au/sites/default/files/documents/attachments/Management-of-Data-and-Information-in-Research.pdf
  45. OECD (2015). Making Open Science a Reality. OECD Science, Technology and Industry Policy Papers, 25, Paris: OECD Publishing. http://dx.doi.org/10.1787/5jrs2f963zs1-en
  46. Perrier, L., Blondal, E., & MacDonald, H. (2020). The views, perspectives, and experiences of academic researchers with data sharing and reuse: A meta-synthesis. PLoS ONE, 15(2), e0229182, https://doi.org/10.1371/journal.pone.0229182
  47. Research Data Alliance (2019). Research Data Management in Engineering IG Charter Statement. Available: https://rd-alliance.org/group/research-data-management-engineering-ig/case-statement/research-data-management-engineering-ig
  48. Springer Nature (2021). Scientific Data. Available: https://www.springernature.com/gp/authors/research-data
  49. Suhr, B., Dungl, J., & Stocker, A. (2020). Search, reuse and sharing of research data in materials science and engineering-A qualitative interview study. PLoS ONE, 15(9), e0239216. https://doi.org/10.1371/journal.pone.0239216
  50. Van Panhuis, W. G., Paul, P., Emerson, C., Grefenstette, J., Wilder, R., Herbst, A. J., Heymann, D., & Burke, D. S. (2014). A systematic review of barriers to data sharing in public health. BMC Public Health, 14(1), 1144. https://doi.org/10.1186/1471-2458-14-1144
  51. Wu, S., & Worrall, A. (2019). Supporting successful data sharing practices in earthquake engineering. Library Hi Tech, 37(4), 764-780. https://doi.org/10.1108/LHT-03-2019-0058
  52. Zuiderwijk, A., Shinde, R., & Jeng, W. (2020). What drives and inhibits researchers to share and use open research data? A systematic literature review to analyze factors influencing open research data adoption. PLoS ONE, 15(9), e0239283, https://doi.org/10.1371/journal.pone.0239283