DOI QR코드

DOI QR Code

Characterizing Organelles in Live Stem Cells Using Label-Free Optical Diffraction Tomography

  • Kim, Youngkyu (Asan Institute for Life Sciences, Asan Medical Center) ;
  • Kim, Tae-Keun (Asan Institute for Life Sciences, Asan Medical Center) ;
  • Shin, Yeonhee (Department of Convergence Medicine, University of Ulsan College of Medicine) ;
  • Tak, Eunyoung (Asan Institute for Life Sciences, Asan Medical Center) ;
  • Song, Gi-Won (Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Oh, Yeon-Mok (Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jun Ki (Asan Institute for Life Sciences, Asan Medical Center) ;
  • Pack, Chan-Gi (Asan Institute for Life Sciences, Asan Medical Center)
  • Received : 2021.07.16
  • Accepted : 2021.09.09
  • Published : 2021.11.30

Abstract

Label-free optical diffraction tomography (ODT), an imaging technology that does not require fluorescent labeling or other pre-processing, can overcome the limitations of conventional cell imaging technologies, such as fluorescence and electron microscopy. In this study, we used ODT to characterize the cellular organelles of three different stem cells-namely, human liver derived stem cell, human umbilical cord matrix derived mesenchymal stem cell, and human induced pluripotent stem cell-based on their refractive index and volume of organelles. The physical property of each stem cell was compared with that of fibroblast. Based on our findings, the characteristic physical properties of specific stem cells can be quantitatively distinguished based on their refractive index and volume of cellular organelles. Altogether, the method employed herein could aid in the distinction of living stem cells from normal cells without the use of fluorescence or specific biomarkers.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) through the Korean Ministry of Science & ICT (MSIT) (grant Nos., 2018R1D1A1B07048696, 2018R1A5A2020732, and 2019R1A2C2084122); the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant No. HI18C2391); and a grant from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea (grant No. 2021IP0035-1). We would like to thank Tomocube Inc. for their technical support and discussion.

References

  1. Al-Bagdadi, F.A., Barona, H.M., Martinez-Ceballos, E., and Yao, S. (2019). Ultrastructure morphological characterization of different passages of rat dental follicle stem cells at in vitro culture. J. Microsc. Ultrastruct. 7, 57-64. https://doi.org/10.4103/jmau.jmau_44_18
  2. Barer, R. (1953). Determination of dry mass, thickness, solid and water concentration in living cells. Nature 172, 1097-1098. https://doi.org/10.1038/1721097a0
  3. Boulon, S., Westman, B.J., Hutten, S., Boisvert, F.M., and Lamond, A.I. (2010). The nucleolus under stress. Mol. Cell 40, 216-227. https://doi.org/10.1016/j.molcel.2010.09.024
  4. Choi, M., Ban, T., and Rhim, T. (2014). Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Mol. Cells 37, 133-139. https://doi.org/10.14348/MOLCELLS.2014.2317
  5. Debnath, S.K. and Park, Y. (2011). Real-time quantitative phase imaging with a spatial phase-shifting algorithm. Opt. Lett. 36, 4677-4679. https://doi.org/10.1364/OL.36.004677
  6. Gnutt, D., Gao, M., Brylski, O., Heyden, M., and Ebbinghaus, S. (2015). Excluded-volume effects in living cells. Angew. Chem. Int. Ed. Engl. 54, 2548-2551. https://doi.org/10.1002/anie.201409847
  7. Hantke, M.F., Hasse, D., Maia, F.R.N.C., Ekeberg, T., John, K., Svenda, M., Loh, N.D., Martin, A.V., Timneanu, N., Larsson, D.S.D., et al. (2014). High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photonics 8, 943-949. https://doi.org/10.1038/nphoton.2014.270
  8. Herrera, M.B., Bruno, S., Buttiglieri, S., Tetta, C., Gatti, S., Deregibus, M.C., Bussolati, B., and Camussi, G. (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells 24, 2840-2850. https://doi.org/10.1634/stemcells.2006-0114
  9. Johnsen, S. and Widder, E.A. (1999). The physical basis of transparency in biological tissue: ultrastructure and the minimization of light scattering. J. Theor. Biol. 199, 181-198. https://doi.org/10.1006/jtbi.1999.0948
  10. Jung, J., Kim, K., Yoon, J., and Park, Y. (2016). Hyperspectral optical diffraction tomography. Opt. Express 24, 2006-2012. https://doi.org/10.1364/OE.24.002006
  11. Jung, M., Choi, H., Kim, J., and Mun, J.Y. (2020). Correlative light and transmission electron microscopy showed details of mitophagy by mitochondria quality control in propionic acid treated SH-SY5Y cell. Materials (Basel) 13, 4336. https://doi.org/10.3390/ma13194336
  12. Kim, G., Lee, M., Youn, S., Lee, E., Kwon, D., Shin, J., Lee, S., Lee, Y.S., and Park, Y. (2018a). Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Sci. Rep. 8, 9192. https://doi.org/10.1038/s41598-018-25886-8
  13. Kim, K. and Guck, J. (2020). The relative densities of cytoplasm and nuclear compartments are robust against strong perturbation. Biophys. J. 119, 1946-1957. https://doi.org/10.1016/j.bpj.2020.08.044
  14. Kim, K., Lee, S., Yoon, J., Heo, J., Choi, C., and Park, Y. (2016b). Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci. Rep. 6, 36815. https://doi.org/10.1038/srep36815
  15. Kim, K., Yoon, J., Shin, S., Lee, S., Yang, S.A., and Park, Y. (2016a). Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photonics Eng. 2, 020201.
  16. Kim, S., Lee, S., Kim, H., and Kim, T. (2018b). Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int. J. Mol. Sci. 19, 3119. https://doi.org/10.3390/ijms19103119
  17. Kim, T.K., Lee, B.W., Fujii, F., Kim, J.K., and Pack, C.G. (2019a). Physicochemical properties of nucleoli in live cells analyzed by label-free optical diffraction tomography. Cells 8, 699. https://doi.org/10.3390/cells8070699
  18. Kim, T.K., Lee, B.W., Fujii, F., Lee, K.H., Lee, S., Park, Y., Kim, J.K., Lee, S.W., and Pack, C.G. (2019b). Mitotic chromosomes in live cells characterized using high-speed and label-free optical diffraction tomography. Cells 8, 1368. https://doi.org/10.3390/cells8111368
  19. Kim, Y.S., Lee, S., Jung, J., Shin, S., Choi, H.G., Cha, G.H., Park, W., Lee, S., and Park, Y. (2018c). Combining three-dimensional quantitative phase imaging and fluorescence microscopy for the study of cell pathophysiology. Yale J. Biol. Med. 91, 267-277.
  20. Koster, A.J. and Klumperman, J. (2003). Electron microscopy in cell biology: integrating structure and function. Nat. Rev. Mol. Cell Biol. Suppl, SS6-SS10.
  21. Lee, J., Choi, J., Kang, S., Kim, J., Lee, R., So, S., Yoon, Y.I., Kirchner, V.A., Song, G.W., Hwang, S., et al. (2020). Hepatogenic potential and liver regeneration effect of human liver-derived mesenchymal-like stem cells. Cells 9, 1521. https://doi.org/10.3390/cells9061521
  22. Lee, J.H., Park, H.J., Kim, Y.A., Lee, D.H., Noh, J.K., Kwon, C.H.D., Jung, S.M., and Lee, S.K. (2012). The phenotypic characteristic of liver-derived stem cells from adult human deceased donor liver. Transplant. Proc. 44, 1110-1112. https://doi.org/10.1016/j.transproceed.2012.02.020
  23. Lee, Y., Kim, T., Lee, M., So, S., Karagozlu, M.Z., Seo, G.H., Choi, I.H., Lee, P.C.W., Kim, C.J., Kang, E., et al. (2021). De novo development of mtDNA deletion due to decreased POLG and SSBP1 expression in humans. Genes (Basel) 12, 284. https://doi.org/10.3390/genes12020284
  24. Li, J., Matlock, A., Li, Y., Chen, Q., Zuo, C., and Tian, L. (2019). High-speed in vitro intensity diffraction tomography. Adv. Photonics 1, 066004.
  25. Magidson, V. and Khodjakov, A. (2013). Circumventing photodamage in live-cell microscopy. Methods Cell Biol. 114, 545-560. https://doi.org/10.1016/B978-0-12-407761-4.00023-3
  26. Manos, P.D., Ratanasirintrawoot, S., Loewer, S., Daley, G.Q., and Schlaeger, T.M. (2011). Live-cell immunofluorescence staining of human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 19, 1C.12.1-1C.12.14.
  27. Najimi, M., Khuu, D.N., Lysy, P.A., Jazouli, N., Abarca, J., Sempoux, C., and Sokal, E.M. (2007). Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes? Cell Transplant. 16, 717-728. https://doi.org/10.3727/000000007783465154
  28. Nemeth, A. and Grummt, I. (2018). Dynamic regulation of nucleolar architecture. Curr. Opin. Cell Biol. 52, 105-111. https://doi.org/10.1016/j.ceb.2018.02.013
  29. Pan, Q., Fouraschen, S.M.G., Kaya, F.S.F.A., Verstegen, M.M., Pescatori, M., Stubbs, A.P., van IJcken, W., van der Sloot, A., Smits, R., Kwekkeboom, J., et al. (2011). Mobilization of hepatic mesenchymal stem cells from human liver grafts. Liver Transpl. 17, 596-609. https://doi.org/10.1002/lt.22260
  30. Park, C., Shin, S., and Park, Y. (2018). Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 35, 1891-1898. https://doi.org/10.1364/JOSAA.35.001891
  31. Park, Y., Diez-Silva, M., Fu, D., Popescu, G., Choi, W., Barman, I., Suresh, S., and Feld, M.S. (2010). Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells. J. Biomed. Opt. 15, 020506. https://doi.org/10.1117/1.3369966
  32. Park, Y., Diez-Silva, M., Popescu, G., Lykotrafitis, G., Choi, W., Feld, M.S., and Suresh, S. (2008). Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 105, 13730-13735. https://doi.org/10.1073/pnas.0806100105
  33. Pepperkok, R. and Ellenberg, J. (2006). High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7, 690-696. https://doi.org/10.1038/nrm1979
  34. Popescu, G., Park, Y., Lue, N., Best-Popescu, C., Deflores, L., Dasari, R.R., Feld, M.S., and Badizadegan, K. (2008). Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 295, C538-C544. https://doi.org/10.1152/ajpcell.00121.2008
  35. Sawyer, I.A., Sturgill, D., and Dundr, M. (2019). Membraneless nuclear organelles and the search for phases within phases. Wiley Interdiscip. Rev. RNA 10, e1514.
  36. So, S., Lee, Y., Choi, J., Kang, S., Lee, J.Y., Hwang, J., Shin, J., Dutton, J.R., Seo, E.J., Lee, B.H., et al. (2020). The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research. PLoS One 15, e0233057. https://doi.org/10.1371/journal.pone.0233057
  37. Stanly, T.A., Suman, R., Rani, G.F., O'Toole, P.J., Kaye, P.M., and Hitchcock, I.S. (2020). Quantitative optical diffraction tomography imaging of mouse platelets. Front. Physiol. 11, 568087. https://doi.org/10.3389/fphys.2020.568087
  38. Takeda, M., Ina, H., and Kobayashi, S. (1982). Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156-160. https://doi.org/10.1364/JOSA.72.000156
  39. Wang, L.V. and Hu, S. (2012). Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458-1462. https://doi.org/10.1126/science.1216210
  40. Wolf, E. (1969). Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153-156. https://doi.org/10.1016/0030-4018(69)90052-2
  41. Woo, H.N., Park, S., Kim, H.L., Jung, M.K., Pack, C.G., Park, J., Cho, Y., Jo, D.G., Kim, D.K., Mook-Jung, I., et al. (2021). miR-351-5p/Miro2 axis contributes to hippocampal neural progenitor cell death via unbalanced mitochondrial fission. Mol. Ther. Nucleic Acids 23, 643-656. https://doi.org/10.1016/j.omtn.2020.12.014
  42. Yoon, J., Jo, Y., Kim, M., Kim, K., Lee, S., Kang, S.J., and Park, Y. (2017). Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Sci. Rep. 7, 6654. https://doi.org/10.1038/s41598-017-06311-y
  43. Zhu, H., Fan, J., Du, J., and Peng, X. (2016). Fluorescent probes for sensing and imaging within specific cellular organelles. Acc. Chem. Res. 49, 2115-2126. https://doi.org/10.1021/acs.accounts.6b00292