DOI QR코드

DOI QR Code

Evaluating Nanomechanical Properties on Interface of Friction-welded TiAl and SCM440 Alloys with Cu as an Insert Metal

삽입금속 Cu를 적용한 TiAl 합금과 SCM440의 마찰용접 계면의 나노역학물성 평가

  • Kim, Ki-Young (Asan Friction Welding Co., Ltd) ;
  • Oh, Myung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Choi, In-Chul (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 김기영 (A.F.W.(주)) ;
  • 오명훈 (금오공과대학교 신소재공학부) ;
  • 최인철 (금오공과대학교 신소재공학부)
  • Received : 2021.11.03
  • Accepted : 2021.11.19
  • Published : 2021.11.30

Abstract

Due to the superior corrosion resistance and mechanical properties of TiAl alloy at high temperature, it has been utilized as a turbine wheel of a turbocharger. The dissimilar metallic bonding is usually applied to combine the TiAl turbine wheel with the SCM440 structural steel which is used as a driving shaft. In this study, the TiAl and SCM440 joint were fabricated by using a friction welding technique. During bonding process, to suppress the martensitic transformation and the formation of cracks, which might reduce a strength of the joints, Cu was used as an insert metal to relieve stress. As a result, the intermetallic compounds (IMCs) layer was observed at TiAl/Cu interface while no IMC formation was formed at SCM440/Cu interface. Since understanding of the IMCs effects on the mechanical performance of welded joint is also essential for ensuring the reliability and integrity of the turbocharger system, we estimated the nanohardness of welded joint region through nanoindentation. The relation between the microstructural feature and its mechanical property is discussed in detail.

Keywords

Acknowledgement

이 연구는 금오공과대학교 학술연구비로 지원되었음(2019104165).

References

  1. M. Yamaguchi and Y. Umakoshi : Prog. Mater. Sci., 34 (1990) 1. https://doi.org/10.1016/0079-6425(90)90002-Q
  2. Y.-W. Kim and S. L. Kim : Intermetallics, 53 (2014) 92. https://doi.org/10.1016/j.intermet.2014.04.006
  3. Y-W Kim and S. L. Kim : JOM, 70 (2018) 553. https://doi.org/10.1007/s11837-018-2747-x
  4. S. -H. Park, K. -Y. Kim, J. -M. Park, I. -C. Choi, K. Ito, and M. H. Oh : Korean J. Mater. Res. 29 (2019) 258. https://doi.org/10.3740/MRSK.2019.29.4.258
  5. G. X. Luo, G. Q. Wu, Z. Huang and Z. J. Ruan : Scripta Materialia. 57 (2007) 521. https://doi.org/10.1016/j.scriptamat.2007.05.020
  6. H. Li, H. Wei, P. He, T. Lin, J. Feng and Y. Huang : Intermetallics, 34 (2013) 69. https://doi.org/10.1016/j.intermet.2012.11.008
  7. W. B. Lee, Y. J. Kim and S. B. Jung : Intermetallics, 12 (2004) 671. https://doi.org/10.1016/j.intermet.2004.02.004
  8. J. -M. Park, K. -Y. Kim, K. -K. Kim and M. H. Oh : J. Korean Soc. Heat Treat. 29 (2016) 1. https://doi.org/10.12656/JKSHT.2016.29.1.1
  9. J. -M. Par, K. -Y. Kim, K. -K. Kim, K. Ito, M. Takahashi, and M. -H. Oh : Metals Mater. Int. 24 (2018) 626. https://doi.org/10.1007/s12540-018-0095-6
  10. S. G. Lee, B. H. Min, S. H. Choi, D. K. Shim, and T. K. Min : J. Korean Weld. Joi. Soc. 25 (2007) 53. https://doi.org/10.5781/KWJS.2007.25.6.053
  11. I. -C. Choi : J. Korean Soc. Heat Treat. 33 (2020) 72.
  12. I. -C. Choi and J. -i. Jang : Adv. Eng. Mater. 22 (2020) 1900648. https://doi.org/10.1002/adem.201900648
  13. W. C. Oliver and G. M. Pharr : J. Mater. Res. 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
  14. W. C. Oliver and G. M. Pharr : J. Mater. Res. 19 (2002) 3. https://doi.org/10.1557/jmr.2004.0002
  15. Y. L. Song, Y. H. Liu, X. Y. Zhu, S. R. Yu, and Y. B. Zhang : Trans. Nonferro. Met. Soc. China, 18 (2008) 14. https://doi.org/10.1016/S1003-6326(08)60003-5
  16. M. -Y. Seok, I. -C. Choi, J. Moon, S. Kim, U. Ramamurty, and J. -i. Jang : Scripta Mater. 87 (2014) 49. https://doi.org/10.1016/j.scriptamat.2014.05.004