DOI QR코드

DOI QR Code

폴리페놀을 다량 함유한 커피박 및 녹차박 추출물의 수준별 첨가가 반추위 발효 및 메탄 발생량에 미치는 영향

Effects of Addition Levels of Coffee and Green Tea By-products Extract including Polyphenols on in vitro Rumen Fermentation and Methane Emission

  • 원미영 (국립농업과학원 농업미생물과) ;
  • 류채화 (국립축산과학원 동물영양생리과) ;
  • 박혜련 (전북대학교 축산학과) ;
  • 채병호 (전북대학교 축산학과) ;
  • 장승호 (전북대학교 축산학과) ;
  • 최승신 (한국사료협회) ;
  • 최봉환 (국립축산과학원 가축유전자원센터) ;
  • 이성수 (국립축산과학원 가축유전자원센터) ;
  • 이진욱 (국립축산과학원 가축유전자원센터) ;
  • 최낙진 (전북대학교 동물자원과학과)
  • 투고 : 2021.11.02
  • 심사 : 2021.11.22
  • 발행 : 2021.11.30

초록

This study was conducted to investigate the effect of addition levels of coffee and green tea by products extract including polyphenols through hot water extraction on rumen fermentation. The treatment groups consisted of coffee extract (CO), green tea extract (GR) and mixed extract (MIX), and the addition level was 10 µL, 20 µL and 30 µL of three levels. The experiment consisted of a total of 10 experimental groups including the control group, and a full factorial design was used. The effect of polyphenol addition in coffee and green tea by-products was analyzed through main and interaction effect of statistical analysis. The total polyphenol content of the extracts was 106.15, 79.10 and 185.25 ㎍ GAE/g DM for coffee by-product, green tea by-product and mixture, respectively. Total gas production was significantly lower in the treatment groups than in the control (114.00 mL/gDM) (p<0.05). Methane emission tended to decrease as the polyphenol addition level increased. Moreover, the MIX showed the lowest methane emission when 30 µL was added (p<0.05). Volatile fatty acids showed a significant difference compared to the treatment group as a control (98.06 mM) (p<0.05), but there was no change according to the level of polyphenols. As a result of the main effect and interaction, it is thought that the effect on methane reduction and improvement of rumen fermentation in MIX20 can be expected. In a series of studies, the addition of 20 µL of a blended extract of coffee and green tea by-products is thought to reduce methane to levels that do not inhibit rumen fermentation.

키워드

과제정보

본 연구는 반추가축용 발효사료 제조 기술 확립 및 효과 구명(PJ01564702)의 지원과 2021년도 농촌진흥청 국립축산과학원 전문연구원 과정 지원 사업에 의해 이루어진 것임.

참고문헌

  1. Appuhamy, J. A., J. France, and E. Kebreab. 2016. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob. Chang. Biol. 22: 3039-3056. https://doi.org/10.1111/gcb.13339
  2. Barry, T. N. and W. C. McNabb. 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81(4): 263-272. https://doi.org/10.1017/s0007114599000501
  3. Bauchop, T. and D. O. Mountfort. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42: 1103-1110. https://doi.org/10.1128/aem.42.6.1103-1110.1981
  4. Bhat, T. K., B. Singh, and O. P. Sharma. 1998. Microbial degradation of tannins-a current perspective. Biodegradation 9(5): 343-357. https://doi.org/10.1023/A:1008397506963
  5. Cai, Y., N. Masuda, Y. Fujita, and H. Kawamoto. 2001. Development of a new method for preparation and conservation of tea grounds silage. Anim. Sci. J. 72: 536-541.
  6. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8: 130-132. https://doi.org/10.1093/clinchem/8.2.130
  7. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771. https://doi.org/10.3168/jds.s0022-0302(61)89956-6
  8. Goel, G. and H. P. Makkar, 2012. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 44(4): 729-739. https://doi.org/10.1007/s11250-011-9966-2
  9. Goiri, I., X. Diaz de Otalora, R. Ruiz, J. Rey, R. Atxaerandio, J. L. Lavin, D. S. Martin, M. Orive, B. Inarra, J. Zufia, J. Urkiza, and A. Garcia-Rodriguez. 2020. Spent coffee grounds alter bacterial communities in Latxa dairy ewes. Microorganisms 8(12): 1961. https://doi.org/10.3390/microorganisms8121961
  10. Hiltner, P. E. G. G. Y. and B. A. Dehority. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 46: 642-648. https://doi.org/10.1128/aem.46.3.642-648.1983
  11. Hristov, A. N., J. K. Ropp, and C. W. Hunt. 2002. Effect of barley and its amylopectin content on ruminal fermentation and bacterial utilization of ammonia-N in vitro. Anim. Feed Sci. Technol. 99(1-4): 25-36. https://doi.org/10.1016/S0377-8401(02)00076-7
  12. IPCC (Intergovermental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp. 1757-1776.
  13. Jimenez-Zamora, A., S. Pastoriza, and J. A. Rufian-Henares. 2015. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT- Food Sci. Technol. 61: 12-18. https://doi.org/10.1016/j.lwt.2014.11.031
  14. Jo, J. M., S. K. Kim, B. R. Min, J. H. Jung, Y. J. Han, and J. W. Kim. 2017. Optimization of hot-water extraction condition of bioactive compounds from coffee residue extracts. Korean Chem. Eng. Res. 55: 358-362.
  15. Juan, M. Y. and C. C. Chou. 2010. Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 27: 586-591. https://doi.org/10.1016/j.fm.2009.11.002
  16. Kainthola, J., M. Shariq, A. S. Kalamdhad, and V. V. Goud. 2019. Electrohydrolysis pretreatment methods to enhance the methane production from anaerobic digestion of rice straw using graphite electrode. Renew. Energy 142: 1-10. https://doi.org/10.1016/j.renene.2019.04.083
  17. Lee, C. H. and S. L. Shin. 2009. Merit and application of plant resources as functional bio-materials for human life and health. In Proceedings of the Plant Resources Society of Korea Conference. The Plant Resources Society of Korea. pp. 5-24.
  18. Makkar, H. P. S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 49: 241-256. https://doi.org/10.1016/S0921-4488(03)00142-1
  19. McDougall, E. I. 1948. Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochem. J. 43: 99-90. https://doi.org/10.1042/bj0430099
  20. Moss, A. R., J. P. Jouany, and J. Newbold. 2000. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 49: 231-253. https://doi.org/10.1051/animres:2000119
  21. Mussatto, S. I., L. F. Ballesteros, S. Martins, and J. A. Teixeira. 2011. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 83: 173-179. https://doi.org/10.1016/j.seppur.2011.09.036
  22. National Greenhouse Gas Inventory Report of Korea, Greenhouse gas inventory and research center of Korea. 2016.
  23. Nishida, T., B. Eruden, K. Hosoda, K. Nakagawa, T. Miyazawa, and S. Shioya. 2006. Effects of green tea (Camellia sinensis) waste silage and polyethylene on ruminal fermentation and blood components in cattle. Asian-Australas. J. Anim. Sci. 19: 1728-1736. https://doi.org/10.5713/ajas.2006.1728
  24. Ok, J. U. 2010. Analysis on various feed Additives utilization for methane reduction and improvement of fermentation characteristics in the rumen. Gyeongsang National University, Jinju, Korea.
  25. Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32(2): 199-208. https://doi.org/10.1079/BJN19740073
  26. Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18: 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  27. Vasta, V., M. Daghio, A. Cappucci, A. Buccioni, A. Serra, C. Viti, and M. Mele. 2019. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 102(5): 3781-3804. https://doi.org/10.3168/jds.2018-14985