DOI QR코드

DOI QR Code

오이 탄저병원균과 잿빛곰팡이병원균에 억제 효과가 있는 방선균 선발

Selection of Antagonistic Soil Actinomycetes Against Both Colletotrichum orbiculare and Botrytis cinerea in Cucumber Plants

  • 곽화숙 (국립농업과학원 농업미생물과) ;
  • 김지원 (국립농업과학원 농업미생물과, 전북대학교 농생물학과) ;
  • 박진우 (국립농업과학원 농업미생물과, 농촌진흥청 대변인실) ;
  • 상미경 (국립농업과학원 농업미생물과)
  • 투고 : 2021.07.23
  • 심사 : 2021.09.30
  • 발행 : 2021.11.30

초록

본 연구에서는 오이 지상부에 발생하는 두 가지 병원균 B. cinerea와 C. orbiculare에 항균활성을 가지는 유용한 방선균을 선발하고자 하였다. 토양에서 분리한 방선균 560 균주 중 두 병원균에 대해 동시 항균활성을 나타낸 7균주를 일차적으로 선발한 후, 배양여액의 항균활성 검정을 위한 대치배양과 오이 식물체 검정을 통해 최종적으로 S20-465 균주를 선발하였다. 이 균주는 염기서열 비교 분석을 통해 Streptomyces sp.로 동정하였다. S20-465 균주의 배양여액은 두 병원균의 균사 생장을 60%이상 억제하였다. 배양여액의 20배, 40배 희석액을 분무 처리할 경우 오이 잎에서의 잿빛곰팡이병에 의한 병반길이를 감소시켰을 뿐만 아니라 탄저병의 발병도도 대조구에 비해 50% 이상 감소시켜 생물검정에서도 병억제 효과가 있는 것을 확인하였다. 따라서 최종 선발한 S20-465는 앞으로 생물방제 미생물소재로써 활용할 수 있을 것으로 사료된다.

The purpose of this study is to select actinomycetes with antifungal activity against Botrytis cinerea and Colletotrichum orbiculare, which are airborne pathogens in cucumber plants. In 2020, 560 species of actinomycetes were isolated from rhizome soils of various vegetables in Korea; 7 strains showing simultaneous antifungal activity against two pathogens were selected. Finally, strain S20-465 was selected through dual culture and plant assay. This strain was identified as Streptomyces sp. based on 16S rRNA analysis. The culture filtrate of strain S20-465 inhibited mycelial growth of both pathogens by more than 60%. In addition, when cucumber plants were treated with 20-fold and 40-fold diluted culture filtrates of S20-465, lesions caused by B. cinerea and C. orbiculare on cucumber leaves were significantly reduced compared to the control. This results suggest that strain S20-465 produces specific secondary metabolites with antifungal activity against both pathogens.

키워드

과제정보

본 연구는 국립농업과학원 연구개발사업(Project No : PJ014978)의 지원에 의하여 이루어짐.

참고문헌

  1. Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press. USA.
  2. Avis, T. J., V. Gravel, H. Antoun, and R. J. Tweddell. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 40(7): 1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013
  3. Ayed, A., L. Kalai-Grami, I. B. Slimene, M. Chaouachi, H. Mankai, I. karkouch, N. Djebali, S. Elkahoui. O. Tabbene, and F. Limam. 2021. Antifungal activity of volatile organic compounds from Streptomyces sp. strain S97 against Botrytis cinerea. Biocontrol. Sci. Technol. 1-19.
  4. Berdy, J. 2005. Bioactive microbial metabolites: a personal view. J. Antibiot. 58(1): 1-26. https://doi.org/10.1038/ja.2005.1
  5. Choi, I. S., Y. R. Jung, and K. Y. Cho. 1995. Variation in phenotypic characteristics, pathogenicity and fungicides resistance of Botrytis cinerea. Kor. J. Mycol. 23(3): 246-256.
  6. Dewi, T. K., D. Agustiani, and S. Antonius. 2015. Secondary metabolites production by actinomycetes and their antifungal activity. Kne life Sciences. 3(4): 256-264.
  7. El-Tarabily, K. A., G. E. S. J. Hardy, and K. Sivasithamparam. 2010. Performance of three encophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the united arab emirates. Eur. J. Plant Pathol. 128(4): 527-539. https://doi.org/10.1007/s10658-010-9689-7
  8. Figueroa-Lopez, A. M., J. D. Cordero-Ramirez, F. R. Quiroz-Figueroa, and I. E. Maldonado-Mendoza. 2014. A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides. J. Basic. Microbiol. 54(S1): 125-133.
  9. Han, J. H., K. S. Park, S. Y. Lee, and J. J. Kim. 2012. Effects of Streptomyces spp. on growth of plants and antifungal activity of plant pathogens. Korean J. Pestic. Sci. 16(4): 383-386. https://doi.org/10.7585/kjps.2012.16.4.383
  10. Inglin, R. C., M. J. A. Stevens, L. Meile, C. Lacroix, and L. Meile. 2015. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J. Microbiol. Methods. 114: 26-29. https://doi.org/10.1016/j.mimet.2015.04.011
  11. Iwasa, T., E. Higashide, H. Yamamoto, and M. Shibata. 1970. Studies on validamycin, new antibiotics. II production and biological properties of validamycins A and B. J. Antibiot. XXIV: 107-113.
  12. Jarvis, W. R. 1977. Botrytis and Botrytis species; Taxanomy, physiology and pathogenecity, a guide to the literature. Monograph No. 15. Ottawa: Canada Department of Agriculture.
  13. Jog, R., G. Nareshkumar, and S. Rajkumar. 2012. Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J. Appl. Microbiol. 113(5): 1154-1164. https://doi.org/10.1111/j.1365-2672.2012.05417.x
  14. Kim, J. J., J. T. Kim, S. W. Park, E. S. Park, and H. T. Kim. 2003. Development of assay method for the activities of new compounds, and the effect of several fungicides against spore germination, adhesion, and myceial growth of Colletotrichum sp. causing red pepper anthracnose. Kor. J. Pesti. Sci. 7(3): 159-168.
  15. Kim S. H., W. J. Choi, Y. K. Baik, and W. S. Kim. 2008. Monitoring of pesticide residues and risk assessment of agricultural products consumed in South Korea. J. Korean. Soc. Food. Sci. Nutr. 37(11): 1515-1522. https://doi.org/10.3746/JKFN.2008.37.11.1515
  16. Kinkel, L. L., D. C. Schlatter, M. G. Bakker, and B. E. Arenz. 2012. Streptomyces competition and coevolution in relation to plant disease suppression. Res. Microbiol. 163(8): 490-499. https://doi.org/10.1016/j.resmic.2012.07.005
  17. Kjeldgaard, B., A. R. Neves, C. Fonseca, A. T. Kovacs, and P. Donminguez-Cuevas. 2021. Development of quantitative high-throughput screening methods for identification of antifungal biocontrol strains. BioRxiv.
  18. Ko, E. J., Y. H. Shin, H. N. Hyun, H. S. Song, J. K. Hong, and Y. C. Jeun. 2019. Bio-sulfur pre-treatment suppresses anthracnose on cucumber leaves inoculated with Colletotrichum orbiculare. Mycobiology. 47(3): 308-318. https://doi.org/10.1080/12298093.2019.1628522
  19. KOSTAT, Production and cultivated area of fruit and vegetables in South Korea. https://kostat.go.kr/portal/korea/index.action. (Assessed date: 2021.07.15)
  20. Kubo, Y. and Y. Takano. 2013. Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J. Gen. Plant Pathol. 79: 233-242. https://doi.org/10.1007/s10327-013-0451-9
  21. Lee, S. Y. Y. K. Lee, K. Park, and Y. K. Kim. 2010. Selection of beneficial microbial agents for control of fungal diseases in the phyllosphere of cucumber plant. Korean J. Pestic. Sci. 14(4): 326-331.
  22. Lengai, G. M. W. and J. W. Muthomi. 2018. Biopesticides and their role in sustainable agricultural production. J. Biosci. Med. 6: 7-41. https://doi.org/10.4236/jbm.2018.66002
  23. Morales, D. K., W. Ocampo, and M. M. Zambrano. 2007. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. J. Appl. Microbibiol. 103(6): 2704-2712. https://doi.org/10.1111/j.1365-2672.2007.03510.x
  24. National crop pest management system (NCPMS). http://www.ncpms.rda.go.kr (Accessed date: 2021.07.19.)
  25. Park, H. H. H. Y. Kim, B. S. Park, T. Fu, and K. S. Kim. 2019. Evaluation of antagonistic activities of Burkholderia cepacia KF1 strain against the pepper anthracnose pathogen Colletotrichum scovillei in South Korea. J. Agric. Life Sci. 53(4): 45-53.
  26. Park, D. W., Y. S. Yang, Y. U. Lee, S. J. Han, H. J. Kim, S. H. Kim, J. P. Kim, S. J. Cho, D. Lee, N. Song, Y. Han, H. H. Kim, B. S. Cho, J. K. Chung, and A. G. Kim. 2021. Pesticide residues and risk assessment from monitoring programs in the largest production area of leafy vegetables in South Korea: a 15-year study. Foods. 10(2): 425. https://doi.org/10.3390/foods10020425
  27. Patel, J. K., S. Madaan, and G. Archana. 2018. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215: 36-45. https://doi.org/10.1016/j.micres.2018.06.003
  28. Ruanpanun, P., N. Tangchitsomkid, K. D. Hyde, and S. Lumyong. 2010. Actinomyces and fungi isolated from plant-parasitic nematode infested soils: Screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 26(9): 1569-1578. https://doi.org/10.1007/s11274-010-0332-8
  29. Santoyo, G., M. C. Orozco-Mosqueda, and M. Govindappa. 2012. Mechanisms of biocontrol and plant growth promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 22(9): 855-872. https://doi.org/10.1080/09583157.2012.694413
  30. Shim, S. A., K. S. Jang, Y. H. Choi, J. C. Kim, H. T. Kim, and G. J. Choi. 2013. Resistance degree of cucurbits cultivars to Colletotrichum orbiculare. Kor. J. Hort. Sci. Technol. 31(3): 371-379.
  31. Slawecki, R. A., E. P. Ryan, and D. H. Young. 2002. Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Appl. Environ. Microbiol. 68: 597-601. https://doi.org/10.1128/AEM.68.2.597-601.2002
  32. Takeuchi, S., K. Hirayama, K. Ueda, H. Sakai, and H. Yonehara. 1958. Blasticidin S, a new antibiotic. J. Antibiot. 11(1): 1-5.
  33. Umezawa, H., M. Hamada, Y. Suhara, T. Hashimoto, and T. Ikekawa. 1965. A new antibiotic, Kasugamycin. J. Antibiot. 11: 1-5.
  34. Williamson, B., B. Tudzynski, P. Tudzynski, and J. A. Van Kan. 2007. Botrytis cinerea: The cause of grey mould disease. Molecular. Plant pathol. 8(5): 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
  35. Yourman, L. F. and S. N. Jeffers. 1999. Resistance to benzimidazole and dicaboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant dis. 83: 569-575. https://doi.org/10.1094/pdis.1999.83.6.569
  36. Zhang, Z. Q., G. Z. Qin, B. Q. Li, and S. P. Tian. 2014. Infection assays of tomato and apple fruit by the fungal pathogen Botrytis cinerea. Bio-Protocol. 4(23): e1311.