과제정보
본 연구는 국립농업과학원 연구개발사업(Project No : PJ014978)의 지원에 의하여 이루어짐.
참고문헌
- Agrios, G. N. 2005. Plant pathology. 5th ed. Elsevier Academic Press. USA.
- Avis, T. J., V. Gravel, H. Antoun, and R. J. Tweddell. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 40(7): 1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013
- Ayed, A., L. Kalai-Grami, I. B. Slimene, M. Chaouachi, H. Mankai, I. karkouch, N. Djebali, S. Elkahoui. O. Tabbene, and F. Limam. 2021. Antifungal activity of volatile organic compounds from Streptomyces sp. strain S97 against Botrytis cinerea. Biocontrol. Sci. Technol. 1-19.
- Berdy, J. 2005. Bioactive microbial metabolites: a personal view. J. Antibiot. 58(1): 1-26. https://doi.org/10.1038/ja.2005.1
- Choi, I. S., Y. R. Jung, and K. Y. Cho. 1995. Variation in phenotypic characteristics, pathogenicity and fungicides resistance of Botrytis cinerea. Kor. J. Mycol. 23(3): 246-256.
- Dewi, T. K., D. Agustiani, and S. Antonius. 2015. Secondary metabolites production by actinomycetes and their antifungal activity. Kne life Sciences. 3(4): 256-264.
- El-Tarabily, K. A., G. E. S. J. Hardy, and K. Sivasithamparam. 2010. Performance of three encophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the united arab emirates. Eur. J. Plant Pathol. 128(4): 527-539. https://doi.org/10.1007/s10658-010-9689-7
- Figueroa-Lopez, A. M., J. D. Cordero-Ramirez, F. R. Quiroz-Figueroa, and I. E. Maldonado-Mendoza. 2014. A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides. J. Basic. Microbiol. 54(S1): 125-133.
- Han, J. H., K. S. Park, S. Y. Lee, and J. J. Kim. 2012. Effects of Streptomyces spp. on growth of plants and antifungal activity of plant pathogens. Korean J. Pestic. Sci. 16(4): 383-386. https://doi.org/10.7585/kjps.2012.16.4.383
- Inglin, R. C., M. J. A. Stevens, L. Meile, C. Lacroix, and L. Meile. 2015. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J. Microbiol. Methods. 114: 26-29. https://doi.org/10.1016/j.mimet.2015.04.011
- Iwasa, T., E. Higashide, H. Yamamoto, and M. Shibata. 1970. Studies on validamycin, new antibiotics. II production and biological properties of validamycins A and B. J. Antibiot. XXIV: 107-113.
- Jarvis, W. R. 1977. Botrytis and Botrytis species; Taxanomy, physiology and pathogenecity, a guide to the literature. Monograph No. 15. Ottawa: Canada Department of Agriculture.
- Jog, R., G. Nareshkumar, and S. Rajkumar. 2012. Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J. Appl. Microbiol. 113(5): 1154-1164. https://doi.org/10.1111/j.1365-2672.2012.05417.x
- Kim, J. J., J. T. Kim, S. W. Park, E. S. Park, and H. T. Kim. 2003. Development of assay method for the activities of new compounds, and the effect of several fungicides against spore germination, adhesion, and myceial growth of Colletotrichum sp. causing red pepper anthracnose. Kor. J. Pesti. Sci. 7(3): 159-168.
- Kim S. H., W. J. Choi, Y. K. Baik, and W. S. Kim. 2008. Monitoring of pesticide residues and risk assessment of agricultural products consumed in South Korea. J. Korean. Soc. Food. Sci. Nutr. 37(11): 1515-1522. https://doi.org/10.3746/JKFN.2008.37.11.1515
- Kinkel, L. L., D. C. Schlatter, M. G. Bakker, and B. E. Arenz. 2012. Streptomyces competition and coevolution in relation to plant disease suppression. Res. Microbiol. 163(8): 490-499. https://doi.org/10.1016/j.resmic.2012.07.005
- Kjeldgaard, B., A. R. Neves, C. Fonseca, A. T. Kovacs, and P. Donminguez-Cuevas. 2021. Development of quantitative high-throughput screening methods for identification of antifungal biocontrol strains. BioRxiv.
- Ko, E. J., Y. H. Shin, H. N. Hyun, H. S. Song, J. K. Hong, and Y. C. Jeun. 2019. Bio-sulfur pre-treatment suppresses anthracnose on cucumber leaves inoculated with Colletotrichum orbiculare. Mycobiology. 47(3): 308-318. https://doi.org/10.1080/12298093.2019.1628522
- KOSTAT, Production and cultivated area of fruit and vegetables in South Korea. https://kostat.go.kr/portal/korea/index.action. (Assessed date: 2021.07.15)
- Kubo, Y. and Y. Takano. 2013. Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J. Gen. Plant Pathol. 79: 233-242. https://doi.org/10.1007/s10327-013-0451-9
- Lee, S. Y. Y. K. Lee, K. Park, and Y. K. Kim. 2010. Selection of beneficial microbial agents for control of fungal diseases in the phyllosphere of cucumber plant. Korean J. Pestic. Sci. 14(4): 326-331.
- Lengai, G. M. W. and J. W. Muthomi. 2018. Biopesticides and their role in sustainable agricultural production. J. Biosci. Med. 6: 7-41. https://doi.org/10.4236/jbm.2018.66002
- Morales, D. K., W. Ocampo, and M. M. Zambrano. 2007. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. J. Appl. Microbibiol. 103(6): 2704-2712. https://doi.org/10.1111/j.1365-2672.2007.03510.x
- National crop pest management system (NCPMS). http://www.ncpms.rda.go.kr (Accessed date: 2021.07.19.)
- Park, H. H. H. Y. Kim, B. S. Park, T. Fu, and K. S. Kim. 2019. Evaluation of antagonistic activities of Burkholderia cepacia KF1 strain against the pepper anthracnose pathogen Colletotrichum scovillei in South Korea. J. Agric. Life Sci. 53(4): 45-53.
- Park, D. W., Y. S. Yang, Y. U. Lee, S. J. Han, H. J. Kim, S. H. Kim, J. P. Kim, S. J. Cho, D. Lee, N. Song, Y. Han, H. H. Kim, B. S. Cho, J. K. Chung, and A. G. Kim. 2021. Pesticide residues and risk assessment from monitoring programs in the largest production area of leafy vegetables in South Korea: a 15-year study. Foods. 10(2): 425. https://doi.org/10.3390/foods10020425
- Patel, J. K., S. Madaan, and G. Archana. 2018. Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol. Res. 215: 36-45. https://doi.org/10.1016/j.micres.2018.06.003
- Ruanpanun, P., N. Tangchitsomkid, K. D. Hyde, and S. Lumyong. 2010. Actinomyces and fungi isolated from plant-parasitic nematode infested soils: Screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 26(9): 1569-1578. https://doi.org/10.1007/s11274-010-0332-8
- Santoyo, G., M. C. Orozco-Mosqueda, and M. Govindappa. 2012. Mechanisms of biocontrol and plant growth promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 22(9): 855-872. https://doi.org/10.1080/09583157.2012.694413
- Shim, S. A., K. S. Jang, Y. H. Choi, J. C. Kim, H. T. Kim, and G. J. Choi. 2013. Resistance degree of cucurbits cultivars to Colletotrichum orbiculare. Kor. J. Hort. Sci. Technol. 31(3): 371-379.
- Slawecki, R. A., E. P. Ryan, and D. H. Young. 2002. Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores. Appl. Environ. Microbiol. 68: 597-601. https://doi.org/10.1128/AEM.68.2.597-601.2002
- Takeuchi, S., K. Hirayama, K. Ueda, H. Sakai, and H. Yonehara. 1958. Blasticidin S, a new antibiotic. J. Antibiot. 11(1): 1-5.
- Umezawa, H., M. Hamada, Y. Suhara, T. Hashimoto, and T. Ikekawa. 1965. A new antibiotic, Kasugamycin. J. Antibiot. 11: 1-5.
- Williamson, B., B. Tudzynski, P. Tudzynski, and J. A. Van Kan. 2007. Botrytis cinerea: The cause of grey mould disease. Molecular. Plant pathol. 8(5): 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
- Yourman, L. F. and S. N. Jeffers. 1999. Resistance to benzimidazole and dicaboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant dis. 83: 569-575. https://doi.org/10.1094/pdis.1999.83.6.569
- Zhang, Z. Q., G. Z. Qin, B. Q. Li, and S. P. Tian. 2014. Infection assays of tomato and apple fruit by the fungal pathogen Botrytis cinerea. Bio-Protocol. 4(23): e1311.