DOI QR코드

DOI QR Code

Class Specific Autoencoders Enhance Sample Diversity

  • Kumar, Teerath (Department of Computer Science and Engineering, Kyung Hee University) ;
  • Park, Jinbae (Department of Computer Science and Engineering, Kyung Hee University) ;
  • Ali, Muhammad Salman (Department of Computer Science and Engineering, Kyung Hee University) ;
  • Uddin, AFM Shahab (Department of Computer Science and Engineering, Kyung Hee University) ;
  • Bae, Sung-Ho (Department of Computer Science and Engineering, Kyung Hee University)
  • Received : 2021.10.08
  • Accepted : 2021.12.06
  • Published : 2021.12.20

Abstract

Semi-supervised learning (SSL) and few-shot learning (FSL) have shown impressive performance even then the volume of labeled data is very limited. However, SSL and FSL can encounter a significant performance degradation if the diversity gap between the labeled and unlabeled data is high. To reduce this diversity gap, we propose a novel scheme that relies on an autoencoder for generating pseudo examples. Specifically, the autoencoder is trained on a specific class using the available labeled data and the decoder of the trained autoencoder is then used to generate N samples of that specific class based on N random noise, sampled from a standard normal distribution. The above process is repeated for all the classes. Consequently, the generated data reduces the diversity gap and enhances the model performance. Extensive experiments on MNIST and FashionMNIST datasets for SSL and FSL verify the effectiveness of the proposed approach in terms of classification accuracy and robustness against adversarial attacks.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2018R1C1B3008159).

References

  1. Krizhevsky, A., Sutskever, I. & Hinton, G. ImageNet classification with deep convolutional neural networks. Communications Of The ACM. 60, 84-90 (2017) https://doi.org/10.1145/3065386
  2. Xin, M. & Wang, Y. Research on image classification model based on deep convolution neural network. EURASIP Journal On Image And Video Processing. 2019, 1-11 (2019) https://doi.org/10.1186/s13640-018-0395-2
  3. Ali, M., Iqbal, T., Lee, K., Muqeet, A., Lee, S., Kim, L. & Bae, S. ERDNN: Error-Resilient Deep Neural Networks With a New Error Correction Layer and Piece-Wise Rectified Linear Unit. IEEE Access. 8 pp. 158702-158711 (2020) https://doi.org/10.1109/access.2020.3017211
  4. Ali, M. & Bae, S. Soft Error Adaptable Deep Neural Networks. Proceedings Of The Korean Society Of Broadcast Engineers Conference. pp. 241-243 (2020)
  5. Khan, L., Saad, W., Han, Z., Hossain, E. & Hong, C. Federated learning for internet of things: Recent advances, taxonomy, and open challenges. IEEE Communications Surveys & Tutorials. (2021)
  6. Jo, T. NTC (Neural Text Categorizer): neural network for text categorization. International Journal Of Information Studies. 2, 83-96 (2010)
  7. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L. & Brown, D. Text classification algorithms: A survey. Information. 10, 150 (2019) https://doi.org/10.3390/info10040150
  8. Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., Yu, P. & He, L. A survey on text classifica- tion: From shallow to deep learning. ArXiv Preprint ArXiv:2008.00364. (2020)
  9. Ullah, I., Khan, S., Imran, M. & Lee, Y. RweetMiner: Automatic identification and categorization of help requests on twitter during disasters. Expert Systems With Applications. 176 pp. 114787 (2021) https://doi.org/10.1016/j.eswa.2021.114787
  10. Sinha, H., Awasthi, V. & Ajmera, P. Audio classification using braided convolutional neural networks. IET Signal Processing. 14, 448-454 (2020) https://doi.org/10.1049/iet-spr.2019.0381
  11. Park, J., Kumar, T. & Bae, S. Search of an Optimal Sound Augmentation Policy for Environ- mental Sound Classification with Deep Neural Networks. Proceedings Of The Korean Society Of Broadcast Engineers Conference. pp. 18-21 (2020)
  12. Kumar, T., Park, J. & Bae, S. Intra-Class Random Erasing (ICRE) augmentation for audio classification. Proceedings Of The Korean Society Of Broadcast Engineers Conference. pp. 244-247 (2020)
  13. Bank, D., Koenigstein, N. & Giryes, R. Autoencoders. ArXiv Preprint ArXiv:2003.05991. (2020)
  14. Zeng, K., Yu, J., Wang, R., Li, C. & Tao, D. Coupled deep autoencoder for single image super-resolution. IEEE Transactions On Cybernetics. 47, 27-37 (2015) https://doi.org/10.1109/TCYB.2015.2501373
  15. Zhai, X., Oliver, A., Kolesnikov, A. & Beyer, L. S4l: Self-supervised semi-supervised learning. Proceedings Of The IEEE/CVF International Conference On Computer Vision. pp. 1476-1485 (2019)
  16. Ebert, S. Semi-supervised learning for image classification. (2012)
  17. Luo, Y., Zhu, J., Li, M., Ren, Y. & Zhang, B. Smooth neighbors on teacher graphs for semi-supervised learning. Proceedings Of The IEEE Conference On Computer Vision And Pattern Recognition. pp. 8896-8905 (2018)
  18. Sohn, K., Berthelot, D., Li, C., Zhang, Z., Carlini, N., Cubuk, E., Kurakin, A., Zhang, H. & Raffel, C. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. ArXiv Preprint ArXiv:2001.07685. (2020)
  19. Shorten, C. & Khoshgoftaar, T. A survey on image data augmentation for deep learning. Journal Of Big Data. 6, 1-48 (2019) https://doi.org/10.1186/s40537-018-0162-3
  20. Wang, X., Wang, K. & Lian, S. A survey on face data augmentation for the training of deep neural networks. Neural Computing And Applications. pp. 1-29 (2020)
  21. Sinha, R., Lee, S., Rim, M. & Hwang, S. Data augmentation schemes for deep learning in an indoor positioning application. Electronics. 8, 554 (2019) https://doi.org/10.3390/electronics8050554
  22. Luo, C., Zhu, Y., Jin, L. & Wang, Y. Learn to augment: Joint data augmentation and network optimization for text recognition. Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition. pp. 13746-13755 (2020)
  23. Gontijo-Lopes, R., Smullin, S., Cubuk, E. & Dyer, E. Tradeoffs in Data Augmentation: An Empirical Study. International Conference On Learning Representations. (2020)
  24. Jorge, J., Vieco, J., Paredes, R., Sanchez, J. & Benedi, J. Empirical Evaluation of Variational Autoencoders for Data Augmentation. VISIGRAPP (5: VISAPP). pp. 96-104 (2018)
  25. Elbattah, M., Loughnane, C., Guerin, J., Carette, R., Cilia, F. & Dequen, G. Variational Au-toencoder for Image-Based Augmentation of Eye-Tracking Data. Journal Of Imaging. 7, 83 (2021) https://doi.org/10.3390/jimaging7050083
  26. Kimura, A., Ghahramani, Z., Takeuchi, K., Iwata, T. & Ueda, N. Few-shot learning of neural networks from scratch by pseudo example optimization. British Machine Vision Conference 2018, BMVC 2018. (2019)
  27. Felix Berkhahn & Dominik Geissler , R. AUGMENTING VARIATIONAL AUTOEN-CODERS WITH SPARSE LABELS: A UNIFIED FRAMEWORK FOR UNSUPERVISED, SEMI-(UN)SUPERVISED, AND SUPERVISED LEARNING. ArXiv E-prints. (2019,11)
  28. Tachibana, R., Matsubara, T. & Uehara, K. Semi-supervised learning using adversarial net-works. 2016 IEEE/ACIS 15th International Conference On Computer And Information Science (ICIS). pp. 1-6 (2016)
  29. Haiyan, W., Haomin, Y., Xueming, L. & Haijun, R. Semi-supervised autoencoder: A joint approach of representation and classification. 2015 International Conference On Computational Intelligence And Communication Networks (CICN). pp. 1424-1430 (2015)
  30. Arazo, E., Ortego, D., Albert, P., O'Connor, N. & McGuinness, K. Pseudo-labeling and confirmation bias in deep semi-supervised learning. 2020 International Joint Conference On Neural Networks (IJCNN). pp. 1-8 (2020)
  31. Wang, Y., Yao, Q., Kwok, J. & Ni, L. Generalizing from a few examples: A survey on few-shot learning. ACM Computing Surveys (CSUR), Vol.53, No.63, pp.1-34, May 2021. https://doi.org/10.1145/3386252
  32. Hariharan, B. & Girshick, R. Low-shot visual recognition by shrinking and hallucinating features. Proceedings Of The IEEE International Conference On Computer Vision. pp. 3018-3027 (2017)
  33. Zeiler, M. Adadelta: an adaptive learning rate method. ArXiv Preprint ArXiv:1212.5701.(2012)
  34. Jiang, S., Zhu, Y., Liu, C., Song, X., Li, X. & Min, W. Dataset Bias in Few-shot Image Recognition. ArXiv Preprint ArXiv:2008.07960. (2020)
  35. Arip Asadulaev, A. Interpretable Few-Shot Learning via Linear Distillation. ArXiv E-prints.(2019,10)
  36. Li, W., Wang, Z., Li, J., Polson, J., Speier, W. & Arnold, C. Semi-supervised learning based on generative adversarial network: a comparison between good GAN and bad GAN approach. ArXiv Preprint ArXiv:1905.06484. (2019)
  37. Kingma, D., Mohamed, S., Rezende, D. & Welling, M. Semi-supervised learning with deep generative models. Advances In Neural Information Processing Systems. pp. 3581-3589 (2014)
  38. Weston, J., Ratle, F., Mobahi, H. & Collobert, R. Deep learning via semi-supervised embedding. Neural Networks: Tricks Of The Trade. pp. 639-655 (2012)
  39. Li, Y., Pan, Q., Wang, S., Peng, H., Yang, T. & Cambria, E. Disentangled variational auto- encoder for semi-supervised learning. Information Sciences. 482 pp. 73-85 (2019) https://doi.org/10.1016/j.ins.2018.12.057
  40. Tachibana, R., Matsubara, T. & Uehara, K. Semi-supervised learning using adversarial networks. 2016 IEEE/ACIS 15th International Conference On Computer And Information Science (ICIS). pp. 1-6 (2016)
  41. Lee, D. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. Workshop On Challenges In Representation Learning, ICML. 3 pp. 2 (2013)
  42. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings Of The IEEE International Conference On Computer Vision. pp. 1026-1034 (2015)
  43. Robbins, H. & Monro, S. A stochastic approximation method. The Annals Of Mathematical Statistics. pp. 400-407 (1951)
  44. Hussain, S. Resources for Urdu language processing. Proceedings Of The 6th Workshop On Asian Language Resources. (2008)
  45. Goodfellow, I., Shlens, J. & Szegedy, C. Explaining and harnessing adversarial examples.ArXiv Preprint ArXiv:1412.6572. (2014)
  46. Rauber, J., Brendel, W. & Bethge, M. Foolbox: A python toolbox to benchmark the robust- ness of machine learning models. ArXiv Preprint ArXiv:1707.04131. (2017)
  47. Plotz, T. & Fink, G. Markov models for offline handwriting recognition: a survey. International Journal On Document Analysis And Recognition (IJDAR). 12, 269 (2009) https://doi.org/10.1007/s10032-009-0098-4
  48. Lee, C. & Leedham, C. A new hybrid approach to handwritten address verification. International Journal Of Computer Vision. 57, 107-120 (2004) https://doi.org/10.1023/b:visi.0000013085.47268.e8
  49. Ul-Hasan, A., Ahmed, S., Rashid, F., Shafait, F. & Breuel, T. Offline printed Urdu Nastaleeq script recognition with bidirectional LSTM networks. 2013 12th International Conference On Document Analysis And Recognition. pp. 1061-1065 (2013)
  50. LeCun, Y. The MNIST database of handwritten digits. Http://yann.Lecun.Com/exdb/mnist/. (1998)
  51. Xiao, H., Rasul, K. & Vollgraf, R. FashionMNIST: a novel image dataset for benchmarking machine learning algorithms. ArXiv Preprint ArXiv:1708.07747. (2017)
  52. Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A. & Carin, L. Variational autoencoder for deep learning of images, labels and captions. Advances In Neural Information Processing Systems. pp. 2352-2360 (2016)