Acknowledgement
The authors gratefully acknowledge the financial support offered by the National Science Fund for Distinguished Young Scholars (52025085), National Natural Science Foundation of China (51878078), Training Program for High-level Technical Personnel in Transportation Industry (2018-025). The Science and Technology Innovation Program of Hunan Province (2020RC4048). Key Research Program of Hunan Province(2022SK2083).
References
- Caurie, M. (2011), "Bound water: its definition, estimation and characteristics", Int. J. Food Sci. Technol. 46(5), 930-934, http://doi.org/10.1111/j.1365-2621.2011.02581.x.
- Costa, A.C.S., Bigham, J.M., Tormena, C.A., Pintro, J.C. (2004), "Clay mineralogy and cation exchange capacity of Brazilian soils from water contents determined by thermal analysis", Thermochim. Acta, 413(1), 73-79. http://doi.org/10.1016/j.tca.2003.10.009.
- Hilhorst, M.A., Dirksen, C., Kampers, F.W.H. and Feddes, R.A. (2001), "Dielectric Relaxation of Bound Water versus Soil Matric Pressure", Soil Sci. Soc. Am. J., 65(2), 311-314. http://doi.org/10.2136/sssaj2001.652311x.
- Hoeg, S., Scholer, H.F. and Warnatz, J. (2004), "Assessment of interfacial mass transfer in water-unsaturated soils during vapor extraction", J. Contam. Hydrol., 74(1-4), 163-195. http://doi.org/10.1016/j.jconhyd.2004.02.010.
- Kasprzhitskii, A.S., Lazorenko, G.I., Sulavko, S.N., Yavna, V.A. and Kochur, A.G. (2016), "A study of the structural and spectral characteristics of free and bound water in kaolinite", Opt. Spectrosc. 121, 357-363. http://doi.org/10.1134/S0030400X16090113.
- Kleinberg, R. and Griffin, D. (2005), "NMR measurements of permafrost: unfrozen water assay, pore-scale distribution of ice, and hydraulic permeability of sediments", Cold Reg. Sci. Technol., 42(1), 63-77. http://doi.org/10.1016/j.coldregions.2004.12.002.
- Lagaly, G. and Ziesmer, S. (2003), "Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions", Adv. Colloid Interface Sci., 100, 105-128. http://doi.org/10.1016/S0001-8686(02)00064-7.
- Logsdon, S.D. and Laird, D.A. (2004), "Electrical conductivity spectra of smectites as influenced by saturating cation and humidity", Clays Clay Miner., 52(4), 411-420. http://doi.org/10.1346/ccmn.2004.0520402.
- Low, P.F. (1979), "Nature and properties of water in montmorillonite-water systems", Soil Sci. Soc. Am. J., 43(4), 651-658. http://doi.org/10.2136/sssaj1979.03615995004300040005x.
- Ma, C. and Hueckel, T. (1992), "Stress and pore pressure in saturated clay subjected to heat from radioactive waste: a numerical simulation", Can. Geotech. J., 29(6), 1087-1094. http://doi.org/10.1139/t92-125.
- Mojid, M. and Cho, H. (2012), "Effects of water content and temperature on the surface conductivity of bentonite clay", Soil. Res., 50(1), 44-49. http://doi.org/10.1071/SR11228.
- Morrow, C., Moore, D.E. and Lockner, D. (2000), "The effect of mineral bond strength and adsorbed water on fault gouge frictional strength", Geophys. Res. Lett., 27(6), 815-818, http://doi.org/10.1029/1999GL008401.
- Nagrale, P.P. and Patil, A.P. (2017), "Improvement in engineering properties of subgrade soil due to stabilization and its effect on pavement response", Geomech. Eng., 12(2), 257-267, http://doi.org/10.12989/gae.2017.12.2.257.
- Panchev, I., Baeva, M. and Lambov, S. (2005), "Influence of edible films upon the moisture loss and microstructure of dietetic sucrose-free sponge cakes during storage", Drying Technol., 23(4), 925-940. http://doi.org/10.1081/DRT200054241.
- Peng, J., Zhang, J., Li, J., Yao, Y. and Zhang, A. (2020), "Modeling humidity and stress-dependent subgrade soils in flexible pavements", Comput. Geotech., 120, 103413. http://doi.org/10.1016/j.compgeo.2019.103413.
- Siewert, C. and Kucerik, J. (2015), "Practical applications of thermogravimetry in soil science", J. Therm. Anal. Calorim. 120(1), 471-480. http://doi.org/10.1007/s10973-014-4256-7.
- Singh, P.N. and Wallender, W.W. (2008), "Effects of adsorbed water layer in predicting saturated hydraulic conductivity for clays with Kozeny-Carman equation", J. Geotech. Geoenviron. Eng., 134(6), 829-836, http://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(829).
- Souza, C. and Nascimento, R. (2008), "Adsorption behavior of cationic polymers on bentonite", J. Therm. Anal. Calorim., 94(2), 579-583. http://doi.org/10.1007/s10973-007-8774-4.
- Sposito, G. and Prost, R. (1982), "Structure of water adsorbed on smectites", Chem. Rev., 82(6), 553-573, http://doi.org/10.1021/cr00052a001.
- Tang, A. and Cui, Y. (2009), "Modelling the thermo-mechanical volume change behaviour of compacted expansive clays", Geotechnique, 59(3), 185-195. http://doi.org/10.1680/geot.2009.59.3.185.
- Tang, L.S., Chen, H.K., Sun, Y.L., Zhang, Q.H. and Liao, H.R. (2018), "Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests", Geomech. Eng., 16(2), 113-124. http://doi.org/10.12989/gae.2018.16.2.113.
- Teltayev, B.B. and Suppes, E.A. (2017), "Regularities for temperature variation in subgrade of highway", Geomech. Eng., 13(5), 793-807. http://doi.org/10.12989/gae.2017.13.5.793.
- Tian, H., Wei, C., Wei, H. and Zhou, J. (2014), "Freezing and thawing characteristics of frozen soils: Bound water content and hysteresis phenomenon", Cold Reg. Sci. Technol., 103, 74-81. http://doi.org/10.1016/j.coldregions.2014.03.007.
- Tomura, S., Maeda, M., Inukai, K., Ohashi, F., Suzuki, M. and Shibasaki, Y. (1998), "Characterization of adsorbed water on sepiolite.", J. Clay Sci. Soc. Jpn., 38(1), 1-9, http://doi.org/10.11362/jcssjnendokagaku1961.38.1.
- Tone, K., Kamori, M. and Shibasaki, Y. (1993), "Adsorbed cations and water film thickness on the kaolinitic clay surface", J. Ceram. Soc. Jpn., 101(1180), 1395-1399, http://doi.org/10.2109/jcersj.101.1395.
- Tuller, M. and Or, D. (2005), "Water films and scaling of soil characteristic curves at low water contents", Water Resour. Res., 41(9), http://doi.org/10.1029/2005WR004142.
- Wang, H., Qian, H., Gao, Y. and Li, Y. (2020), "Classification and physical characteristics of bound water in loess and its main clay minerals", Eng. Geol., 265, http://doi.org/10.1016/j.enggeo.2019.105394.
- Wang, W.Y., Li, A.M. and Zhang, X.M. (2011a), "DSC and SEM analysis on bound water characteristics in sewage sludge", Adv. Mater. Res., 347, 2085-2089. http://doi.org/10.4028/www.scientific.net/AMR.347-353.2085.
- Wang, Y., Lu, S., Ren, T. and Li, B. (2011b), "Bound Water Content of Air-Dry Soils Measured by Thermal Analysis", Soil Sci. Soc. Am. J., 75(2), 481-487. http://doi.org/10.2136/sssaj2010.0065.
- Watanabe, K. and Mizoguchi, M. (2002), "Amount of unfrozen water in frozen porous media saturated with solution", Cold Reg. Sci. Technol., 34(2), 103-110. http://doi.org/10.1016/S0165-232X(01)00063-5.
- Xu, H., Shu, S., Wang, S., Zhou, A., Jiang, P., Zhu, W., Fan, X. and Chen, L. (2019), "Studies on the chemical compatibility of soil-bentonite cut-off walls for landfills", J. Environ. Manage., 237, 155-162. http://doi.org/10.1016/j.jenvman.2019.02.051.
- Yesilbas, M. and Boily, J.F. (2016), "Particle size controls on water adsorption and condensation regimes at mineral surfaces", Sci. Rep., 6, 32136. http://doi.org/10.1038/srep32136.
- Zeng, L., Xiao, L., Zhang, J. and Fu, H. (2020), "The Role of Nanotechnology in Subgrade and Pavement Engineering: A Review", J. Nanosci. Nanotechnol., 20(8), 4607-4618. http://doi.org/10.1166/jnn.2020.18491.
- Zhang, J., Ding, L., Li, F. and Peng, J. (2020a), "Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China", J. Cleaner Prod., 255, 120223, http://doi.org/10.1016/j.jclepro.2020.120223.
- Zhang, R., Wu, M., Kumar, P. and Gao, Q.F. (2020b), "Influence of loosely bound water on compressibility of compacted fine-grained soils", Adv. Civ. Eng., 2020, 1-14. http://doi.org/10.1155/2020/1496241.
- Zymnis, D.M., Whitttle, A. and Germaine, J.T. (2019), "Measurement of Temperature-Dependent Bound Water in Clays", Geotech. Test. J., 42(1), 20170012, http://doi.org/10.1520/GTJ20170012.