Acknowledgement
This research was a part of the project titled 'Development of Design Technology for Safe Harbor from Disasters' (No. 20180323), funded by the Ministry of Oceans and Fisheries, Korea.
References
- Al-Homoud, A.S. and Whitman, R.V. (1995), "Comparison between fe prediction and results from dynamic centrifuge tests on tilting gravity walls", Soil Dynam. Earthq. Eng., 14(4), 259-268. https://doi.org/10.1016/0267-7261(94)00051-H.
- Alyami, M., Rouainia, M. and Wilkinson, S.M. (2009), "Numerical analysis of deformation behaviour of quay walls under earthquake loading", Soil Dynam. Earthq. Eng., 29, 525-536. https://doi.org/10.1016/j.soildyn.2008.06.004.
- Arablouei, A., Gharabaghi, A.R.M., Ghalandarzadeh, A., Abedi, K. and Ishibashi, I. (2011), "Effects of seawater-structure-soil interaction on seismic performance of caisson-type quay wall", Computers and Structures, 89, 2439-2459. https://doi.org/10.1016/j.compstruc.2011.06.005.
- Athanasopoulos-Zekkos, A., Vlachakis, V.S. and Athanasopoulos, G.A. (2013), "Phasing issues in the seismic response of yielding, gravity-type earth retaining walls - Overview and results from a FEM study", Soil Dynam. Earthq. Eng., 55, 59-70. https://doi.org/10.1016/j.soildyn.2013.08.004.
- Bauduin, C., Mengeot, P. and Ganne, P. (2017). "Design and construction issues for deepening and strengthening of existing quay walls", Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, Korea.
- Benz, T. (2007), "Small-strain stiffness of soils and its numerical consequences", Ph.D. Dissertation, Universitat Sttutgart, Gemany.
- Brinkgreve, R.B.J., Engin, E. and Engin, H.K. (2010). "Validation of Empirical Formulas to Derive Model Parameters for Sands." Proceedings of the 7th European Conference Numerical Methods in Geotechnical Engineering (NUMGE), Trondheim, Norway.
- Cho, H.I., Kim, H.S., Sun, C.G. and Kim, D.S. (2020), "Settlement prediction for footings based on stress history from Vs measurements", Geomech. Eng., 20(5) 371-384. http://dx.doi.org/10.12989/gae.2020.20.5.371.
- Cho, H.I., Sun, C.G., Kim, J.H. and Kim, D.S. (2018), "OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity", Geomech. Eng., 15(4), 987-995. http://dx.doi.org/10.12989/gae.2018.15.4.987.
- Chopra, A.K. (2001), Dynamics of Structures: Theory and Applications to Earthquake Engineering, 2nd Edition, Pearson Prentice Hall, Englewood, New Jersey, USA.
- Cihan, H.K., Ergin, A., Cihan, K. and Guler, I. (2015), "Dynamic responses of two blocks under dynamic loading using experimental and numerical studies", Appl. Ocean Res., 49, 72-82. https://doi.org/10.1016/j.apor.2014.11.003.
- Dakoulas, P. and Gazetas, G. (2008), "Insight into seismic earth and water pressures against caisson quay walls" Geotechnique, 58(2) 95-111. https://doi.org/10.1680/geot.2008.58.2.95.
- Dakoulas, P., Vazouras, P., Kallioglou, P. and Gazetas, G. (2018), "Effective-stress seismic analysis of a gravity multi-block quay wall", Soil Dynam. Earthq. Eng., 115, 378-393. https://doi.org/10.1016/j.soildyn.2018.08.032.
- Galal, E.M. (2017), "A numerical study for upgrading the container terminal of port-said west port", Port-Said Eng. Res. J., 21(2), 88-97. https://dx.doi.org/10.21608/pserj.2017.33296.
- Galavi, V., Petalas, A. and Brinkgreve, R.B.J. (2013), "finite element modelling of seismic liquefaction in soils", Geotech. Eng., 44(3), 55-64.
- Gerolymos, N., Tasiopoulou, P. and Gazetas, G. (2015), "Seismic performance of block-type gravity quay-wall: numerical modeling versus centrifuge experiment" Proceedings of the SECED 2015 conference on Earthquake Risk and Engineering towards a Resilient World, Cambridge, UK.
- Ha, I.S. and Han, J.T. (2016), "Evaluation of the allowable axial bearing capacity of a single pile subjected to machine vibration by numerical analysis", J. Geo-Eng., 22(7). https://doi.org/10.1186/s40703-016-0036-5.
- Ha, J.G., Lee, S.H., Kim, D.S. and Choo, Y.W. (2014), "Simulation of soil-foundation-structure interaction of Hualien large-scale seismic test using dynamic centrifuge test", Soil Dynam. Earthq. Eng., 61-62, 176-187. https://doi.org/10.1016/j.soildyn.2014.01.008.
- Iai, S., Tobita, T. and Nakahara, T. (2005), "Generalised scaling relations for dynamic centrifuge tests", Geotechnique, 55(5), 355-362. https://doi.org/10.1680/geot.2005.55.5.355.
- Inagaki, H., Iai, S., Sugano, T., Yamazaki, H. and Inatomi, T. (1996), "Performance of caisson type quay walls at Kobe Port", Soils Foundations, 119-136. https://doi.org/10.3208/sandf.36.special_119.
- Khan, M.R.A., Hayano, K. and Kitazume, M. (2009), "Behavior of sheet pile quay wall stabilized by sea-side ground improvement in dynamic centrifuge tests", Soils Foundations, 49(2), 193-206. https://doi.org/10.3208/sandf.49.193.
- Kim, D.S., Kim, N.R., Choo, Y.W. and Cho, G.C. (2013), "A newly developed state-of-the-art geotechnical centrifuge in Korea", KSCE J. Civil Eng., 17(1), 77-84. https://doi.org/10.1007/s12205-013-1350-5.
- Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", Soil Dynam. Division, 99(SM5), 421-427. https://doi.org/10.1061/JSFEAQ.0001885.
- Lee, C.J. (2005), "Centrifuge modeling of the behavior of caisson-type quay walls during earthquakes", Soil Dynam. Earthq. Eng., 25(2), 117-131. https://doi.org/10.1016/j.soildyn.2004.10.011.
- Ministry of Ocean and Fisheries (2018), Harbor and Fishing Port Design Standard, Ministry of Ocean and Fisheries; Sejong, Republic of Korea.
- Mizutani, T. and Kikuchi, Y. (2013), "Shaking table tests on caisson-type quay wall with stabilized mound", Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013, Paris, August.
- Nakamura, S. (2006), "Reexamination of Mononobe-Okabe theory of gravity retaining walls using centrifuge model tests", Soils Foundations, 46(2), 135-145. https://doi.org/10.3208/sandf.46.135.
- Ngo, V.L., Kim, J.M. and Lee, C. (2019), "Influence of structure-soil-structure interaction on foundation behavior for two adjacent structures: Geo-centrifuge experiment", Geomech. Eng., 19(5), 407-420. http://dx.doi.org/10.12989/eri.2019.19.5.407.
- Nguyen, A.D., Kim, Y.S., Kang, G.O. and Kim, H.J. (2021), "Numerical analysis of static behavior of caisson-type quay wall deepened by grouting rubble-mound", J. Geo-Eng., 12(1), 1-16. https://doi.org/10.1186/s40703-020-00130-3.
- Obrzud, R.F. and Truty, A. (2018), The Hardening Soil Model - A Practical Guidebook, Zace Services Ltd., Preverenges, Switzerland.
- Oung, O. and Brassinga, H. (2015), "Uncertainties in Redesigning an Existing Quay Wall." Proceedings of the 5th International Symposium on Geotechnical Safety and Risk, Rotterdam, October.
- Pitilakis, K., Kirtas, E., Sextos, A., Bolton, M., Madabhushi, G. and Brennan, A. (2004), "Validation by Centrifuge Testing of Numerical Simulations for Soil-Foundation-Structure Systems." Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, August.
- PLAXIS (2018), Material Models Manual, Bentley Systems, PA, USA.
- Rahaman, O. and Raychowdhury, P. (2017), "Seismic active earth pressure on bilinear retaining walls using a modified pseudo-dynamic method", J. Geo-Eng., 8(1), 1-24. https://doi.org/10.1186/s40703-017-0040-4.
- Ruggeri, P., Fruzzetti, V.M.E. and Scarpelli, G. (2019), "Renovation of Quay Walls to Meet More Demanding Requirements: Italian Experiences", Coastal Eng., 147, 25-33, https://doi.org/10.1016/j.coastaleng.2019.01.003.
- Schanz, T., Vermeer, P. and Bonier, P. (1999). "Formulation and verification of the hardening soil model", Beyond 2000 in Computational Geotechnics, Routledge, London, United Kingdom.
- Zeng, X. and Schofield, A.N. (1996), "Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling", Geotechnique, 46(1), 83-102. https://doi.org/10.1680/geot.1996.46.1.83.