DOI QR코드

DOI QR Code

Predicting the shear strength parameters of rock: A comprehensive intelligent approach

  • Fattahi, Hadi (Faculty of Earth Sciences Engineering, Arak University of Technology) ;
  • Hasanipanah, Mahdi (Institute of Research and Development, Duy Tan University)
  • 투고 : 2021.04.13
  • 심사 : 2021.11.10
  • 발행 : 2021.12.10

초록

In the design of underground excavation, the shear strength (SS) is a key characteristic. It describes the way the rock material resists the shear stress-induced deformations. In general, the measurement of the parameters related to rock shear strength is done through laboratory experiments, which are costly, damaging, and time-consuming. Add to this the difficulty of preparing core samples of acceptable quality, particularly in case of highly weathered and fractured rock. This study applies rock index test to the indirect measurement of the SS parameters of shale. For this aim, two efficient artificial intelligence methods, namely (1) adaptive neuro-fuzzy inference system (ANFIS) implemented by subtractive clustering method (SCM) and (2) support vector regression (SVR) optimized by Harmony Search (HS) algorithm, are proposed. Note that, it is the first work that predicts the SS parameters of shale through ANFIS-SCM and SVR-HS hybrid models. In modeling processes of ANFIS-SCM and SVR-HS, the results obtained from the rock index tests were set as inputs, while the SS parameters were set as outputs. By reviewing the obtained results, it was found that both ANFIS-SCM and SVR-HS models can provide acceptable predictions for interlocking and friction angle parameters, however, ANFIS-SCM showed a better generalization capability.

키워드

참고문헌

  1. Adhikari, R. and Agrawal, R.K. (2011), "Effectiveness of PSO based neural network for seasonal time series forecasting", Proceedings of the Indian International Conference on Artificial Intelligence (IICAI), Tumkur, December.
  2. Alejano, L.R. and Carranza-Torres, C. (2011), "An empirical approach for estimating shear strength of decomposed granites in Galicia, Spain", Eng. Geol., 120(1-4), 91-102. https://doi.org/10.1016/j.enggeo.2011.04.003
  3. Amann, F., Kaiser, P. and Button, E.A. (2012), "Experimental study of brittle behavior of clay shale in rapid triaxial compression", Rock Mech. Rock Eng., 45, 21-33. https://doi.org/10.1007/s00603-011-0195-9
  4. Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cem. Concr. Res., 136, 106167, https://doi.org/10.1016/j.cemconres.2020.106167.
  5. Armaghani, D.J., Mirzaei, F., Toghroli, A. and Shariati, A. (2020a), "Indirect measure of shear strength parameters of fiber-reinforced sandy soil using laboratory tests and intelligent systems", Geomech. Eng., 22(5), 397-414. http://dx.doi.org/10.12989/gae.2020.22.5.397.
  6. Asadi, M. and Bagheripour, M.H. (2013), "Numerical and intelligent modeling of triaxial strength of anisotropic jointed rock specimens", Earth Sci. Inform., 7, 165-172. https://doi.org/10.1007/s12145-013-0137-z.
  7. Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T., Kardani, N. and Jahed Armaghani, D. (2021), "Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks", Transp. Geotech., 29, 100588. https://doi.org/10.1016/j.trgeo.2021.100588.
  8. Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl. https://doi.org/10.1007/s00521-019-04663-2.
  9. Asteris, P.G. and Nikoo, M. (2019), "Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures", Neural Comput. Appl., 31(9), 4837-4847. https://doi.org/10.1007/s00521-018-03965-1.
  10. Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Antonia Moropoulou, A. (2019a), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concr., 24(4), 329-345. http://dx.doi.org/10.12989/cac.2019.24.4.329.
  11. Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J. and Lourenco, P.G. (2018), "Masonry compressive strength prediction using artificial neural networks", International Conference on Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage, Athens, October.
  12. Asteris, P.G., Armaghani, D.J., Hatzigeorgiou Karayannis, C.G. and Pilakoutas, K. (2019b), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concr., 24(5), 469-488. http://dx.doi.org/10.12989/cac.2019.24.5.469.
  13. Asteris, P.G., Moropoulou, A., Skentou, A.D., Apostolopoulou, M., Mohebkhah, A., Cavaleri, L., Rodrigues, H. and Varum, H. (2019c), "Stochastic vulnerability assessment of masonry structures: Concepts, modeling and restoration Aspects", Appl. Sci., 9(2), 243. https://doi.org/10.3390/app9020243.
  14. Bai, X., Cheng, W., Ong, D.E.L. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. http://dx.doi.org/10.12989/gae.2021.25.1.059.
  15. Bardhan, A., Gokceoglu, C., Burman, A., Samui, P. and Asteris, P.G. (2021), "Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions", Eng. Geol., 291, 106239. https://doi.org/10.1016/j.enggeo.2021.106239.
  16. Barla, G., Barla, M. and Debernardi, D. (2010), "New triaxial apparatus for rocks", Rock Mech. Rock Eng., 43, 225-230. https://doi.org/10.1007/s00603-009-0076-7.
  17. Barton, N. (2013), "Shear strength criteria for rock, rock joints, rockfill and rock masses: problems and some solutions", J. Rock Mech. Geotech. Eng., 5(4), 249-261. https://doi.org/10.1016/j.jrmge.2013.05.008.
  18. Bejarbaneh, B.Y., Bejarbaneh, E.Y., Amin, M.F.M., Fahimifar, A., Jahed Armaghani, D. and Majid, M.Z.A. (2018), "Intelligent modelling of sandstone deformation behaviour using fuzzy logic and neural network systems", Bull. Eng. Geol. Environ., 77, 345-361. https://doi.org/10.1007/s10064-016-0983-2.
  19. Bouayad, D. and Emeriault, F. (2017), "Modeling the relationship between ground surface settlements induced by shield tunneling and the operational and geological parameters based on the hybrid PCA/ANFIS method", Tunn. Undergr. Sp. Technol., 80, 1-9. https://doi.org/10.1016/j.tust.2017.03.011.
  20. Brady, B.H. (2004), Rock Mechanics: For Underground Mining, Springer, Berlin, Germany.
  21. Chen, W., Hasanipanah, M., Nikafshan Rad, H., Jahed Armaghani, D. and Tahir, M.M. (2021), "A new design of evolutionary hybrid optimization of SVR model in predicting the blast-induced ground vibration", Eng. Comput., 37, 1455-1471. https://doi.org/10.1007/s00366-019-00895-x.
  22. Chiu, S.L. (1994), "Fuzzy model identification based on cluster estimation", J. Intell. Fuzzy Syst., 2, 267-278. https://doi.org/10.3233/IFS-1994-2306.
  23. Dantas Neto, S.A., Indraratna, B., Oliveira, D.A.F. and de Assis, A.P. (2017), "Modelling the shear behaviour of clean rock discontinuities using artificial neural networks", Rock Mech. Rock Eng., 50, 1817-1831. https://doi.org/10.1007/s00603-017-1197-z.
  24. Eberhart, R.C. and Shi, Y. (1998), "Evolving artificial neural networks", Proceedings of the International Conference on Neural Networks and Brain, PL5-PL13, Beijing, October.
  25. Fattahi, H. (2016), "Application of improved support vector regression model for prediction of deformation modulus of a rock mass", Eng. Comput., 32, 567-580. https://doi.org/10.1007/s00366-016-0433-6.
  26. Fattahi, H. (2017), "Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values", Computat. Geosci., 21, 665-681. https://doi.org/10.1007/s10596-017-9642-3.
  27. Fattahi, H. (2020), "A New Method for Forecasting of Uniaxial Compressive Strength of Weak Rocks", J. Mining Environ., 11(2), 505-515. https://doi.org/10.22044/jme.2020.9328.1835.
  28. Fattahi, H. and Babanouri, N. (2017), "Predicting tensile strength of rocks from physical properties based on support vector regression optimized by cultural algorithm", J. Mining Environ., 8(3), 467-474. https://doi.org/10.22044/jme.2016.824.
  29. Fattahi, H. and Bayat, N. (2019), "Forecasting of Rock Drillability Using a New Computational Intelligent Method", Geotech. Geol. Eng., 38, 5693. https://doi.org/10.1007/s10706-019-00971-5
  30. Geem, Z.W. (2009), Music-inspired Harmony Search Algorithm: Theory and Applications, Springer Verlag, Berlin, Germany.
  31. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search simulation", Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201.
  32. Ghazvinian, A. and Hadei, M.R. (2012), "Effect of discontinuity orientation and confinement on the strength of jointed anisotropic rocks", Int. J. Rock Mech. Min. Sci., 55, 117-124. http://dx.doi.org/10.1016/j.ijrmms.2012.06.008.
  33. Hajdarwish, A. and Shakoor, A. (2006), "Predicting the shear strength parameters of mudrocks", Geol. Soc. London, 2, 607.
  34. Harandizadeh, H., Armaghani, D.J., Asteris, P.G. and Gandomi, A.H. (2021), "TBM performance prediction developing a hybrid ANFIS-PNN predictive model optimized by imperialism competitive algorithm", Neural Comput. Appl., 33(23), 16149-16179. https://doi.org/10.1007/s00521-021-06217-x.
  35. Hasanipanah, M. and Bakhshandeh Amnieh, H. (2020a), "A fuzzy rule based approach to address uncertainty in risk assessment and prediction of blast-induced flyrock in a quarry", Nat. Resour. Res., 29(2), 669-689. https://doi.org/10.1007/s11053-020-09616-4.
  36. Hasanipanah, M. and Bakhshandeh Amnieh, H. (2020b), "Developing a new uncertain rule-based fuzzy approach for evaluating the blast-induced backbreak", Eng. Comput., 37(3), 1879-1893. https://doi.org/10.1007/s00366-019-00919-6.
  37. Hasanipanah, M., Keshtegar, B., Thai, D.K. and Troung, N.T. (2020a), "An ANN-adaptive dynamical harmony search algorithm to approximate the flyrock resulting from blasting", Eng. Comput., 2020, 1-13. https://doi.org/10.1007/s00366-020-01105-9.
  38. Hasanipanah, M., Meng, D., Keshtegar, B., Trung, N.T. and Thai, D.K. (2020b), "Nonlinear models based on enhanced Kriging interpolation for prediction of rock joint shear strength", Neural Comput. Appl., 33(9), 4205-4215. https://doi.org/10.1007/s00521-020-05252-4.
  39. Hasanipanah, M., Noorian-Bidgoli, M., Jahed Armaghani, D. and Khamesi, H. (2016), "Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling", Eng. Comput., 32, 705-715. https://doi.org/10.1007/s00366-016-0447-0.
  40. Hasanipanah, M., Zhang, W., Armaghani, D.J. and Rad, H.N. (2020c), "The potential application of a new intelligent based approach in predicting the tensile strength of rock", IEEE Access, 8, 57148-57157. https://doi.org/10.1109/ACCESS.2020.2980623.
  41. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of the 5th North American Rock Mechanics Symposium and 17th Tunnelling Association of Canada Conference: University of Toronto, Toronto, July.
  42. Hong, W.C. (2011), "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm", Energy, 36, 5568-5578. https://doi.org/10.1016/j.energy.2011.07.015.
  43. Huang, J., Duan, T., Zhang, Y., Liu, J., Zhang, J. and Lei, Y. (2020), "Predicting the permeability of pervious concrete based on the beetle antennae search algorithm and random forest model", Adv. Civ. Eng., 2, 8863181. https://doi.org/10.1155/2020/8863181.
  44. Huang, J., Sun, Y. and Zhang, J. (2021), "Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm", Eng. Comput. https://doi.org/10.1007/s00366-021-01305-x.
  45. Iannacchione, A.T. and Vallejo, L.E. (2000), "Shear strength evaluation of clay-rock mixtures", Slope Stability 2000, ASCE Geotechnical Special Publication 101, 209-223, Denver, August.
  46. International Society for Rock Mechanics (ISRM). (2007), "The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006". Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods, International Society for Rock Mechanics, ISRM Turkish National Group, Ankara, Turkey,\
  47. Iphar, M. (2012), "ANN and ANFIS performance prediction models for hydraulic impact hammers", Tunn. Undergr. Sp. Technol., 27, 23-29. https://doi.org/10.1016/j.tust.2011.06.004.
  48. Islam, M.A. and Skalle, P. (2013), "An experimental investigation of shale mechanical properties through drained and undrained test mechanisms", Rock Mech. Rock Eng., 46, 1391-1413. https://doi.org/10.1007/s00603-013-0377-8.
  49. Jaeger, J.C., Cook, N.G.W. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, Wiley-Blackwell, NJ, USA.
  50. Jahed Armaghani, D. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Applic., 33, 4501-4532. https://doi.org/10.1007/s00521-020-05244-4.
  51. Jahed Armaghani, D., Amin, M.F.M., Yagiz, S., Faradonbeh, R.S. and Abdullah, R.A. (2016), "Prediction of the uniaxial compressive strength of sandstone using various modeling techniques", Int. J. Rock Mech. Min. Sci., 85, 174-186. https://doi.org/10.1016/j.ijrmms.2016.03.018.
  52. Jahed Armaghani, D., Hajihassani, M., Yazdani Bejarbaneh, B., Marto, A. and Tonnizam Mohamad, E. (2014), "Indirect Measure of Shale Shear Strength Parameters by Means of Rock Index Tests through an Optimized Artificial Neural Network", Measurement, 55, 487-498. https://doi.org/10.1016/j.measurement.2014.06.001.
  53. Jahed Armaghani, D., Safari, V., Fahimifar, A., Monjezi, M. and Mohammadi, M.A. (2018), "Uniaxial compressive strength prediction through a new technique based on gene expression programming", Neural Comput. Appl., 30(11), 3523-3532. https://doi.org/10.1007/s00521-017-2939-2.
  54. Jang, J.S.R. (1993), "ANFIS adaptive-network-based fuzzy inference system", IEEE Trans. Syst. Man Cybern., 23, 665-685. https://doi.org/10.1109/21.256541.
  55. Kainthola, A., Singh, P.K., Verma, D., Singh, R., Sarkar, K. and Singh, T.N. (2015), "Prediction of strength parameters of himalayan rocks: a statistical and ANFIS approach", Geotech. Geol. Eng., 33, 1255-1278. https://doi.org/10.1007/s10706-015-9899-z.
  56. Khandelwal, M., Marto, A., Fatemi, S.A., Ghoroqi, M., Armaghani, D.J., Singh, T.N. and Tabrizi, O. (2018), "Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples", Eng. Comput., 34(2), 307-317. https://doi.org/10.1007/s00366-017-0541-y.
  57. Le, T.T., Asteris, P.G. and Lemonis, M.E. (2021), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput. https://doi.org/10.1007/s00366-021-01461-0.
  58. Liu, L., Yang, C. and Wang, X. (2021), "Landslide susceptibility assessment using feature selection-based machine learning models", Geomech. Eng., 25(1), 1-16. http://dx.doi.org/10.12989/gae.2021.25.1.001.
  59. Mclamore, R. and Gray, K. (1990), The Mechanical Behaviour of Anisotropic Sedimentary Rocks, J. Eng. Ind., 89(1), 62-73. https://doi.org/10.1115/1.3610013.
  60. Mishra, D.A., Srigyan, M., Basu, A. and Rokade, P.J. (2015), "Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests", Int. J. Rock Mech. Min. Sci., 80, 418-424. https://doi.org/10.1016/j.ijrmms.2015.10.012.
  61. Moayedi, H. and Armaghani, D.J. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. Comput., 34(2), 347-356. https://doi.org/10.1007/s00366-017-0545-7.
  62. Monjezi, M., Hasanipanah, M. and Khandewal, M. (2013), "Evaluation and prediction of blast-induced ground vibration at Shur River Dam Iran, by artificial neural network", Neural Comput. Appl., 22, 1637-1643. https://doi.org/10.1007/s00521-012-0856-y.
  63. Mottahedi, A., Sereshki, F. and Ataei, M. (2018), "Overbreak prediction in underground excavations using hybrid ANFIS-PSO model", Tunn. Undergr. Sp. Technol., 68, 142-152. https://doi.org/10.1016/j.tust.2018.05.023.
  64. Murlidhar, B.R., Ahmed M., Mavaluru D., Siddiqi A.F. and Mohamad E.T. (2018), "Prediction of rock interlocking by developing two hybrid models based on GA and fuzzy system", Eng. Comput., 35, 1419-1430. https://doi.org/10.1007/s00366-018-0672-9.
  65. Sadeghi, F., Monjezi, M. and Armaghani, D.J. (2020), "Evaluation and optimization of prediction of toe that arises from mine blasting operation using various soft computing techniques", Nat. Resour. Res., 29(2), 887-903. https://doi.org/10.1007/s11053-019-09605-2.
  66. Sharma, L.K., Vishal, V. and Singh, T.N. (2017), "Developing novel models using neural networks and fuzzy systems for the prediction of strength of rocks from key geomechanical properties", Measurement, 102, 158-169. https://doi.org/10.1016/j.measurement.2017.01.043.
  67. Singh, M. and Singh, B. (2012), "Modified Mohr-Coulomb criterion for non-linear triaxial and polyaxial strength of jointed rocks", Int. J. Rock Mech. Min. Sci., 51, 43-52. https://doi.org/10.1016/j.ijrmms.2011.12.007.
  68. Singh, R., Kainthola, A. and Singh, T.N. (2012), "Estimation of elastic constant of rocks using an ANFIS approach", Appl. Soft Comput., 12(1), 40-45. https://doi.org/10.1016/j.asoc.2011.09.010.
  69. Singh, T.N., Kanchan, R., Verma, A.K. and Saigal, K. (2005), "A comparative study of ANN and Neuro-fuzzy for the prediction of dynamic constant of rockmass", J. Earth Syst. Sci., 114, 75-86. https://doi.org/10.1007/BF02702010.
  70. Taghavifar, H. and Mardani, A. (2014), "Prognostication of vertical stress transmission in soil profile by adaptive neuro-fuzzy inference system based modeling approach", Measurement, 50, 152-159. https://doi.org/10.1016/j.measurement.2013.12.035.
  71. Teymen, A. and Menguc, E.C. (2020), "Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks", Int. J. Min. Sci. Technol., 30(6), 785-797. https://doi.org/10.1016/j.ijmst.2020.06.008.
  72. Wu, J.D., Hsu, C.C. and Wu, G.Z. (2009), "Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference", Expert Syst. Appl., 36, 6244-6255. https://doi.org/10.1016/j.eswa.2008.07.023.
  73. Yang, H., Nikafshan Rad, H., Hasanipanah, M., Bakhshandeh Amnieh, H. and Nekouie, A. (2020), "Prediction of Vibration Velocity Generated in Mine Blasting Using Support Vector Regression Improved by Optimization Algorithms", Nat. Resour. Res., 29, 807-830. https://doi.org/10.1007/s11053-019-09597-z.
  74. Yang, Y. and Zang, O. (1997), "A hierarchical analysis for rock engineering using artificial neural networks", Rock Mech. Rock Eng., 30, 207-222. https://doi.org/10.1007/BF01045717.
  75. Yazdani, B. (2012), "Shear Strength Parameters of Shale Based on Triaxial Compression Test", M.Sc. Dissertation, Universiti Teknologi Malaysia.
  76. Ye, J., Dalle, J., Nezami, R., Hasanipanah, M. and Armaghani, D.J. (2020), "Stochastic fractal search-tuned ANFIS model to predict blast-induced air overpressure", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-020-01085-w.
  77. Zhang, W. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016.
  78. Zhang, W., Li, H., Li, Y. Liu, H., Chen, Y. and Ding, X. (2021a), "Application of deep learning algorithms in geotechnical engineering: A short critical review", Artif. Intell. Rev., 1-41. https://doi.org/10.1007/s10462-021-09967-1
  79. Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021b), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Front., 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007.
  80. Zhang, W., Zhang, R., Wu, C., Goh, A.T.C., Lacasse, S., Liu, Z. and Liu, H. (2020), "State-of-the-art review of soft computing applications in underground excavations", Geosci. Front., 11(4), 1095-1106. https://doi.org/10.1016/j.gsf.2019.12.003.
  81. Zhou, J., Li, E., Wang, M., Chen, X., Shi, X. and Jiang, L. (2019), "Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories", J. Perform. Constr. Fac., 33(3), 04019024 . https://doi.org/10.1061/(ASCE)CF.1943-5509.0001292.