Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C4069794).
References
- Abbas, A., Cotsovos, D.M. and Behinaein, P. (2018), "Behaviour of steel-fibre-reinforced concrete beams under high-rate loading", Comput. Concrete, 22(3), 337-353. https://doi.org/10.12989/cac.2018.22.3.337.
- Abdel-Kader, M.M. and Fouda, A. (2017), "Improving the impact resistance of concrete panels by glass fiber reinforced polymer sheets", Int. J. Prot. Struct., 8(2), 304-320. https://doi.org/10.1177/2041419617712168.
- AFGC (2002), "Ultra-high performance fibre-reinforced concrete-interim recommendations", Assoc. Francaise de Genie Civil, Paris, France.
- ASTM (2007), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, American Society for Testing and Materials, ASTM International West Conshohocken, PA, USA.
- Beppu, M., Miwa, K., Itoh, M., Katayama, M. and Ohno, T. (2008), "Damage evaluation of concrete plates by high-velocity impact", Int. J. Impact Eng., 35(12), 1419-1426. https://doi.org/10.1016/j.ijimpeng.2008.07.021.
- Choi, J.I., Lee, B.Y., Ranade, R., Li, V.C. and Lee, Y. (2016), "Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite", Cement Concrete Compos., 70, 153-158. https://doi.org/10.1016/j.cemconcomp.2016.04.002.
- Djamai, Z.I., Bahrar, M., Salvatore, F., Larbi, A.S. and El Mankibi, M. (2017), "Textile reinforced concrete multiscale mechanical modelling: Application to TRC sandwich panels", Finite Elem. Anal. Des., 135, 22-35. https://doi.org/10.1016/j.finel.2017.07.003.
- Graybeal, B.A. (2007), "Compressive behavior of ultra-high-performance fiber-reinforced concrete", ACI Mater. J., 104(2), 146.
- Hanif, A., Cheng, Y., Lu, Z. and Li, Z. (2018), "Mechanical behavior of thin-laminated cementitious composites incorporating cenosphere fillers", ACI Mater. J., 115(1), 117-127. https://doi.org/10.14359/51701007.
- Hazell, P.J. (2015), Armour: Materials, Theory, and Design, CRC Press.
- Huo, J., Li, Z., Zhao, L., Liu, J. and Xiao, Y. (2018), "Dynamic behavior of CFRP-strengthened reinforced concrete beams without stirrups under impact loading", ACI Struct. J., 115, 775-787.
- Husem, M., Cosgun, S.I. and Sesli, H. (2018), "Finite element analysis of RC walls with different geometries under impact loading", Comput. Concrete, 21(5), 583-592. https://doi.org/10.12989/cac.2018.21.5.583.
- Hwang, H.J., Zang, L. and Ma, G. (2019), "Effect of impact loading on bar development length in CCT node", J. Struct. Integr. Maint., 4(1), 26-36. https://doi.org/10.1080/24705314.2019.1565059.
- Hwang, J.S., Lee, K.S., Hur, M.W. and Lee, S.H. (2019), "Mechanical hysteresis model of a metal-wire Kagome truss for seismic strengthening for building systems", J. Asian Archit. Build. Eng., 18(2), 112-120. https://doi.org/10.1080/13467581.2019.1599898.
- JSCE (2008), "Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC)", Japan Soc. Civil Eng., Japan, March.
- Kang, K.J. (2015), "Wire-woven cellular metals: The present and future", Prog. Mater. Sci., 69, 213-307. https://doi.org/10.1016/j.pmatsci.2014.11.003.
- Kang, S.T. (2020), "The use of river sand for fine aggregate in UHPC and the effect of its particle size", Adv. Concrete Constr., 10(5), 431-441. https://doi.org/10.12989/acc.2020.10.5.431.
- Kang, S.T., Choi, J.I., Koh, K.T., Lee, K.S. and Lee, B.Y. (2016), "Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete", Compos. Struct., 145, 37-42. https://doi.org/10.1016/j.compstruct.2016.02.075.
- Karanth, S.S., Ghorpade, V.G. and Rao, H.S. (2017), "Shear and impact strength of waste plastic fibre reinforced concrete", Adv. Concrete Constr., 5(2), 173. https://doi.org/10.12989/acc.2017.5.2.173.
- Kennedy, R. (1976), "A review of procedures for the analysis and design of concrete structures to resist missile impact effects", Nucl. Eng. Des., 37(2), 183-203. https://doi.org/10.1016/0029-5493(76)90015-7.
- Kim, H., Kim, G., Gucunski, N., Nam, J. and Jeon, J. (2015), "Assessment of flexural toughness and impact resistance of bundle-type polyamide fiber-reinforced concrete", Compos. Part B Eng., 78(1), 431-446. https://doi.org/10.1016/j.compositesb.2015.04.011.
- Kim, H., Kim, G., Nam, J., Kim, J., Han, S. and Lee, S. (2015), "Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete", Compos. Struct., 134, 831-844. https://doi.org/10.1016/j.compstruct.2015.08.128.
- Kim, H., Lee, C.J., Shon, C.S., Moon, H. and Chung, C.W. (2020), "Mechanical performance and chloride ion penetration of polyolefin fiber reinforced concrete designed for shotcreting at marine environment", J. Struct. Integr. Maint., 5(1), 8-17. https://doi.org/10.1080/24705314.2019.1692164.
- Kim, S., Jeong, S.Y. and Kang, T.H.K. (2019), "Design of small impact test device for concrete panels subject to high speed collision", Adv. Concrete Constr., 7(1), 23. https://doi.org/10.12989/acc.2019.7.1.023.
- Kim, S., Park, C. and Kim, D.J. (2020), "Dynamic tensile behavior of SIFRCCs at high strain rates", Comput. Concrete, 26(3), 275-283. https://doi.org/10.12989/cac.2020.26.3.275.
- Lee, B.K. and Kang, K.J. (2010), "A parametric study on compressive characteristics of wire-woven bulk Kagome truss cores", Compos. Struct., 92(2), 445-453. https://doi.org/10.1016/j.compstruct.2009.08.029.
- Lee, M., Lee, K., Hur, H. and Kang, K. (2013), "Mechanical behavior of a wire-woven metal under compression", Compos. Struct., 95, 264-277. https://doi.org/10.1016/j.compstruct.2012.06.016.
- Li, P. and Yu, Q. (2019), "Responses and post-impact properties of ultra-high performance fibre reinforced concrete under pendulum impact", Compos. Struct., 208, 806-815. https://doi.org/10.1016/j.compstruct.2018.10.071.
- Liu, S., Zhu, D., Ou, Y., Yao, Y. and Shi, C. (2018), "Impact response of basalt textile reinforced concrete subjected to different velocities and temperatures", Constr. Build. Mater., 175, 381-391. https://doi.org/10.1016/j.conbuildmat.2018.04.193.
- Maalej, M., Quek, S.T. and Zhang, J. (2005), "Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact", J. Mater. Civil Eng., 17(2), 143-152. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:2(143).
- Munjal, P. and Singh, S. (2020), "Out-of-plane response of ECC-strengthened masonry walls", J. Struct. Integr. Maint., 5(1), 18-30. https://doi.org/10.1080/24705314.2019.1692165.
- Naaman, A.E. (2000), Ferrocement and Laminated Cementitious Composites, Techno Press, Ann Arbor.
- Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
- Portal, N.W., Flansbjer, M., Zandi, K., Wlasak, L. and Malaga, K. (2017), "Bending behaviour of novel Textile Reinforced Concrete-foamed concrete (TRC-FC) sandwich elements", Compos. Struct., 177, 104-118. https://doi.org/10.1016/j.compstruct.2017.06.051.
- Rahman, I.A., Zaidi, A.M.A., Bux, Q. and Latif, I. (2010), "Review on empirical studies of local impact effects of hard missile on concrete structures", Int. J. Sustain. Constr. Eng. Tech., 1(1), 73-98.
- Siddika, A., Al Mamun, M.A., Ferdous, W. and Alyousef, R. (2020), "Performances, challenges and opportunities in strengthening reinforced concrete structures by using FRPs-A state-of-the-art review", Eng. Fail. Anal., 111, 104480. https://doi.org/10.1016/j.engfailanal.2020.104480.
- Siddiqui, N.A., Al-Salloum, Y.A., Almusallam, T.H., Abadel, A.A. and Abbas, H. (2018), "Reliability assessment of hfrc slabs against projectile impact", Int. J. Concrete Struct. Mater., 12(1), 58. https://doi.org/10.1186/s40069-018-0289-9.
- Singh, S.B., Chauhan, A. and Munjal, P. (2018), "Composite mechanics-based design approach for FRP-strengthened walls", J. Struct. Integr. Maint., 3(3), 160-170. https://doi.org/10.1080/24705314.2018.1492670.
- Ulzurrun, G.S. and Zanuy, C. (2017), "Enhancement of impact performance of reinforced concrete beams without stirrups by adding steel fibers", Constr. Build. Mater., 145, 166-182. https://doi.org/10.1016/j.conbuildmat.2017.04.005.
- Wang, S., Naaman, A.E. and Li, V.C. (2004), "Bending response of hybrid ferrocement plates with meshes and fibers", J. Ferroce., 34(1), 275-288.
- Yang, Y., Wang, Y., Chen, Y. and Zhang, B. (2019), "Test study on the impact resistance of steel fiber reinforced full lightweight concrete beams", Earthq. Struct., 17(6), 567-575. https://doi.org/10.12989/eas.2019.17.6.567.
- Yerramala, A., Chandurdu, C.R. and Desai, V.B. (2016), "Impact strength of metakaolin ferrocement", Mater. Struct., 49(1-2), 5-15. https://doi.org/10.1617/s11527-014-0469-2.
- Yoo, D.Y. and Banthia, N. (2017), "Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast", Constr. Build. Mater., 149, 416-431. https://doi.org/10.1617/s11527-014-0469-2.
- Yoo, D.Y. and Banthia, N. (2019), "Impact resistance of fiber-reinforced concrete-A review", Cement Concrete Compos., 104, 103389. https://doi.org/10.1016/j.cemconcomp.2019.103389.