DOI QR코드

DOI QR Code

Effects of multi-walled carbon nanotubes on the hydration heat properties of cement composites

  • Received : 2021.07.01
  • Accepted : 2021.11.08
  • Published : 2021.11.25

Abstract

In recent years, nano-reinforcing materials are widely utilized in cement composites due to their unique multifunctional properties. This study incorporated multi-walled carbon nanotubes (MWCNTs) into the cementitious composites at ratios of 0.1%, 0.3%, and 0.5%, and investigated their influence on the flowability, mechanical strength, and hydration heat properties. The addition of MWCNTs enhanced the compressive and split tensile strengths approximately by 18-51%. In the semi-adiabatic temperature rise test, the internal hydration heat of the composites reduced by 5%, 9%, and 12% with the increase of MWCNTs in 0.1%, 0.3%, and 0.5%. This study further performed hydration heat analysis and estimated the adiabatic temperature rise, thermal stress, and thermal crack index. The internal hydration heat of the concrete decreased by 5%, 10%, and 13% with the increase of MWCNTs. The thermal stress of the concrete decreased with increase in the addition of MWCNTs, and the obtained temperature crack index was effective in controlling the thermal cracks.

Keywords

Acknowledgement

This research was supported by the Natural Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (NRF-2020R1F1A104969511).

References

  1. ACI 207.1R-96 (2009), Guide to Mass Testing, 1-30.
  2. Ballim, Y. and Graham, P.C. (2009), "The effects of supplementary cementing materials in modifying the heat of hydration of concrete", Mater. Struct., 42, 803-811. https://doi.org/10.1617/s11527-008-9425-3.
  3. Coppola, L., Cadoni, E., Forni, D. and Buoso, A. (2011), "Mechanical characterization of cement composites reinforced with fiberglass, carbon nanotubes or glass reinforced plastic (GRP) at high strain rates", Appl. Mech. Mater., 82, 190-195. https://doi.org/10.4028/www.scientific.net/AMM.82.190.
  4. De Schutter, G. (1999), "Hydration and temperature development of concrete made with blast-furnace slag cement", Cement Concrete Res., 29, 143-149. https://doi.org/10.1016/S0008-8846(98)00229-4.
  5. Djezzar, M., Ezziane, K., Kadri, A. and Kadri, E.H. (2018), "Modelling of ultimate value and kinetic compressive strength and hydration heat of concrete made with different replacement rates of silica fume and w/b ratios", Adv. Concrete Constr., 6(3), 297-305. https://doi.org/10.12989/acc.2018.6.3.297.
  6. Flahaut, E., Peigney, A., Laurent, C., Marliere, C., Chastel, F. and Rousset, A. (2000), "Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties", Acta Mater., 48, 3803-3812. https://doi.org/10.1016/S1359-6454(00)00147-6.
  7. Frias, M., De Rojas, M.I.S. and Cabrera, J. (2000), "Effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars", Cement Concrete Res., 30, 209-216. https://doi.org/10.1016/S0008-8846(99)00231-8.
  8. Gruyaert, E., Robeyst, N. and De, B.N. (2010), "Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry" J. Therm. Anal. Calorimetry, 102(3), 941-951. https://doi.org/10.1007/s10973-010-0841-6.
  9. Han, B., Sun, S., Ding, S., Zhang, L., Yu, X. and Ou, J. (2015), "Review of nanocarbon-engineered multifunctional cementitious composites", Compos. Part A Appl. Sci. Manuf., 70, 69-81. https://doi.org/10.1016/j.compositesa.2014.12.002.
  10. Hu, J., Ge, K. and Wang, K. (2014), "Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times", Constr. Build. Mater., 50, 657-663. https://doi.org/10.1016/j.conbuildmat.2013.10.011.
  11. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0.
  12. Jang, S.H., Hochstein, D.P., Kawashima, S. and Yin, H. (2017), "Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture", Cement Concrete Compos., 77, 49-59. https://doi.org/10.1016/j.cemconcomp.2016.12.003.
  13. Kang, S.T., Seo, J.Y. and Park, S.H. (2015), "The characteristics of CNT/cement composites with acid-treated MWCNTs", Adv. Mater. Sci. Eng., 2015, 308725. https://doi.org/10.1155/2015/308725.
  14. Kim, H.K., Nam, I.W. and Lee, H.K. (2014), "Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume", Compos. Struct., 107, 60-69. https://doi.org/10.1016/j.compscitech.2009.03.006.
  15. Kim, P., Shi, L., Majumdar, A. and McEuen, P.L. (2001), "Thermal transport measurements of individual multiwalled nanotubes", Phys. Rev. Lett., 87, 215502. https://doi.org/10.1103/PhysRevLett.87.215502.
  16. Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010), "Highly dispersed carbon nanotube reinforced cement based materials", Cement Concrete Res., 40, 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015.
  17. Kong, D., Pan, H., Wang, L., Corr, D.J., Yang, Y., Shah, S.P. and Sheng, J. (2019), "Effect and mechanism of colloidal silica sol on properties and microstructure of the hardened cement-based materials as compared to nano-silica powder with agglomerates in micron-scale", Cement Concrete Compos., 98, 137-149. https://doi.org/10.1016/j.cemconcomp.2019.02.015.
  18. Land, G. and Stephan, D. (2012), "The influence of nano-silica on the hydration of ordinary Portland cement", Mater. Sci., 107, 1011-1017. https://doi.org/10.1007/s10853-011-5881-1.
  19. Li, Z., Ding, S., Yu, X., Han, B. and Ou, J. (2018), "Multifunctional cementitious composites modified with nano titanium dioxide: A review", Compos. Part A Appl. Sci. Manuf., 111, 115-137. https://doi.org/10.1016/j.compositesa.2018.05.019.
  20. Li, Z., Corr, D.J., Han, B. and Shah, S.P. (2020), "Investigating the effect of carbon nanotube on early age hydration of cementitious composites with isothermal calorimetry and fourier transform infrared spectroscopy", Cement Concrete Compos., 107, 103513. https://doi.org/10.1016/j.cemconcomp.2020.103513.
  21. Li, G.Y., Wang, P.M. and Zhao, X. (2007), "Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites", Cement Concrete Compos., 29, 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011.
  22. Li, G.Y., Wang, P.M. and Zhao, X. (2005), "Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes", Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017.
  23. Lim, C.K., Kim, J.K. and Seo, T.S. (2016), "Prediction of concrete adiabatic temperature rise characteristic by semi-adiabatic temperature rise test and FEM analysis", Constr. Build. Mater., 125, 679-689. https://doi.org/10.1016/j.conbuildmat.2016.08.072.
  24. Makar, J.M. and Chan, G.W. (2009), "Growth of cement hydration products on single-walled carbon nanotubes", J. Am. Ceram. Soc., 92, 1303-1310. https://doi.org/10.1111/j.1551-2916.2009.03055.x.
  25. Mehta, P.K. and Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties, and Materials, 3rd Ed., McGraw-Hill, New York.
  26. Mendoza, O., Sierra, G. and Tobon, J.I. (2014), "Effect of the reagglomeration process of multi-walled carbon nanotubes dispersions on the early activity of nanosilica in cement composites", Constr. Build. Mater., 54, 550-557. https://doi.org/10.1016/j.conbuildmat.2013.12.084.
  27. Menendez, E. (2004), "Delayed ettringite formation in massive concrete structures: An account of some studies of degraded bridges", Mater. Sci., 127-136. https://doi.org/10.1617/2912143802.008.
  28. Menu, B., Jolin, M., Bissonnette, B. and Ginouse, N. (2017), "Evaluation of early age shrinkage cracking tendency of concrete", Proc. CSCE Annual Conf. Leadership Sustain. Infrastr., Vancouver, Canada, June.
  29. Naqi, A., Abbas, N., Zahra, N., Hussain, A. and Shabbir, S.Q. (2019), "Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials", J. Mater. Res. Technol., 8, 1203-1211. https://doi.org/10.1016/j.jmrt.2018.09.006.
  30. Noorvand, H., Abang Ali, A.A., Demirboga, R., Farzadnia, N. and Noorvand, H. (2013), "Incorporation of nano TiO2 in black rice husk ash mortars", Constr. Build. Mater., 47, 1350-1361. https://doi.org/10.1016/j.conbuildmat.2013.06.066.
  31. Ng, P.L. and Kwan, A.K.H. (2012), "Semi-adiabatic curing test with heat loss compensation for evaluation of adiabatic temperature rise of concrete", HKIE Trans. Hong Kong Inst. Eng., 19, 11-19. https://doi.org/10.1080/1023697X.2012.10669000.
  32. Ozbay, E., Erdemir, M. and Durmus, H.I. (2016), "Utilization and efficiency of ground granulated blast furnace slag on concrete properties-A review", Constr. Build. Mater., 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153.
  33. Park, J.M., Kim, D.S., Lee, J.R. and Kim, T.W. (2003), "Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique", Mater. Sci. Eng. C., 23, 971-975. https://doi.org/10.1016/j.msec.2003.09.131.
  34. Peigney, A., Laurent, C., Flahaut, E. and Rousset, A. (2000), "Carbon nanotubes in novel ceramic matrix nanocomposites", Ceram. Int., 26, 677-683. https://doi.org/10.1016/S0272-8842(00)00004-3.
  35. Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000), "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites", Appl. Phys. Lett., 76, 2868-2870. https://doi.org/10.1063/1.126500.
  36. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A., 69, 255-260. https://doi.org/10.1007/s003390050999.
  37. Sanchez, F. and Ince, C. (2009), "Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites", Compos. Sci. Technol., 69, 1310-1318. https://doi.org/10.1016/j.compscitech.2009.03.006.
  38. Schutter, G.D. and Taerwe, L. (1995), "General hydration model for Portland cement and blast furnace slag cement", Cement Concrete Res., 25, 593-604. https://doi.org/10.1016/0008-8846%2895%2900048-H.
  39. Shi, T., Gao, Y., Corr, D.J. and Shah, S.P. (2019), "FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials", Adv. Cem. Res., 31, 353-361. https://doi.org/10.1680/jadcr.16.00167.
  40. Stynoski, P., Mondal, P. and Marsh, C. (2015), "Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar", Cement Concrete Compos., 55, 232-240. https://doi.org/10.1016/j.cemconcomp.2014.08.005.
  41. Suraneni, P. and Weiss, J. (2017), "Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis", Cement Concrete Compos., 83, 273-278. https://doi.org/10.1016/j.cemconcomp.2017.07.009.
  42. Torabian Isfahani, F., Li, W. and Redaelli, E. (2016), "Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites", Cement Concrete Compos., 74, 154-163. https://doi.org/10.1016/j.cemconcomp.2016.09.007.
  43. Xu, G., Tian, Q., Miao, J. and Liu, J. (2017), "Early-age hydration and mechanical properties of high volume slag and fly ash concrete at different curing temperatures", Constr. Build. Mater., 149, 367-377. https://doi.org/10.1016/j.conbuildmat.2017.05.080.
  44. Zaheer, M.M., Jafri, M.S. and Sharma, R. (2019), "Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites", Adv. Concrete Constr., 8(3), 207-215. http://doi.org/10.12989/acc.2019.8.3.207.
  45. Zhang, Z., Zhang, B. and Yan, P. (2016), "Hydration and microstructures of concrete containing raw or densified silica fume at different curing temperatures", Constr. Build. Mater., 121, 483-490. https://doi.org/10.1617/s11527-008-9425-3.