Acknowledgement
This research was supported by the Daejeon University fund (2015).
References
- Aldea, C.M., Shah, S.P. and Karr, A. (1999), "Effect of cracking on water and chloride permeability of concrete", J. Mater. Civil Eng., 11(3), 181-187. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(181).
- Boulfiza, M., Sakai, K., Banthia, N. and Yoshida, H. (2003), "Prediction of chloride ions ingress in uncracked and cracked concrete", Mater. J., 100(1), 38-48.
- CEB-FIP (2006), Model Code for Service Life Design, International Federation for Structural Concrete fib, Task Group 5.6.
- Cho, S.J., Yoon, Y.S. and Kwon, S.J. (2018), "Carbonation behavior of GGBFS-based concrete with cold joint considering curing period", J. Korean Recycle. Constr. Res. Inst., 6(4), 259-266. https://doi.org/10.14190/JRCR.2018.6.4.259.
- Gerard, B. and Marchand, J. (2000), "Influence of cracking on the diffusion properties of cement-based materials: Part I: Influence of continuous cracks on the steady-state regime", Cement Concrete Res., 30(1), 37-43. https://doi.org/10.1016/S0008-8846(99)00201-X.
- Giaralis, A. and Spanos, P.D. (2012), "Derivation of response spectrum compatible non-stationary stochastic processes relying on Monte Carlo-based peak factor estimation", Earthq. Struct., 3(3), 581-609. https://doi.org/10.12989/eas.2012.3.3_4.581
- Gjorv, O.E. (2013), "Durability design and quality assurance of major concrete infrastructure", Adv. Concrete Constr., 1(1), 45. https://doi.org/10.12989/acc.2013.1.1.045.
- Gjorv, O.E. (2013), "Durability design and quality assurance of major concrete infrastructure", Adv. Concrete Constr., 1(1), 45. https://doi.org/10.12989/acc.2013.1.1.045.
- Hwang, S.H., Yoon, Y.S. and Kwon, S.J. (2019), "Carbonation behavior of GGBFS concrete considering loading conditions and cold joint", J. Korea Concrete Inst., 31(4), 365-373. https://doi.org/10.4334/jkci.2019.31.4.365
- Cody, A.M., Lee, H., Cody, R.D. and Spry, P.G. (2004), "The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al (OH) 6] 2 (SO4) 3. 26H2O", Cement Concrete Res., 34(5), 869-881. https://doi.org/10.1016/j.cemconres.2003.10.023.
- Joshaghani, A., Moeini, M.A. and Balapour, M. (2017), "Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete", Adv. Concrete Constr., 5(3), 241. https://doi.org/10.12989/acc.2017.5.3.241.
- Kato, E., Kato, Y. and Uomoto, T. (2005), "Development of simulation model of chloride ion transportation in cracked concrete", J. Adv. Concrete Tech., 3(1), 85-94. https://doi.org/10.3151/jact.3.85.
- Kim, T.H. and Kwon, S.J. (2020), "Probabilistic Service Life Analysis of GGBFS Concrete Exposed to Carbonation Cold Joint and Loading Conditions", J. Korea Inst. Struct. Maint. Inspec., 24(3), 39-46. https://doi.org/10.11112/jksmi.2020.24.3.39.
- Lindquist, W.D., Darwin, D., Browning, J. and Miller, G.G. (2006), "Effect of cracking on chloride content in concrete bridge decks", Am. Concrete Inst..
- Nakamura, H., Srisoros, W., Yashiro, R. and Kunieda, M. (2006), "Time-dependent structural analysis considering mass transfer to evaluate deterioration process of RC structures", J. Adv. Concrete Tech., 4(1), 147-158. https://doi.org/10.3151/jact.4.147.
- Malerba, P.G., Sgambi, L., Ielmini, D. and Gotti, G. (2017), "Influence of corrosive phenomena on bearing capacity of RC and PC beams", Adv. Concrete Constr., 5(2), 117. https://doi.org/10.12989/acc.2017.5.2.117.
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991), "Fundamental modeling and experimental investigation of concrete carbonation", Mater. J., 88(4), 363-373.
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991), "Physical and chemical characteristics affecting the durability of concrete", Mater. J., 88(2), 186-196.
- Papadakis, V.G. (2013), "Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration", Adv. Concrete Constr., 1(3), 201. https://doi.org/10.12989/acc2013.1.3.201.
- Rodriguez, O.G. (2003), "Influence of cracks on chloride ingress into concrete Ph.D. Dissertation of Philosophy, University of Toronto, Toronto, Canada.
- Saetta, A.V., Schrefler, B.A. and Vitaliani, R. (1995), "2-D model for carbonation and moisture/heat flow in porous materials", Cement Concrete Res., 25(8), 1703-1712. https://doi.org/10.1016/0008-8846(95)00166-2.
- Saetta, A.V. and Vitaliani, R.V. (2004), "Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: Part I: Theoretical formulation", Cement Concrete Res., 34(4), 571-579. https://doi.org/10.1016/j.cemconres.2003.09.009.
- Samaha, H.R. and Hover, K.C. (1992), "Influence of microcracking on the mass transport properties of concrete", Mater. J., 89(4), 416-424.
- De Schutter, G. (1999), "Quantification of the influence of cracks in concrete structures on carbonation and chloride penetration", Mag. Concrete Res., 51(6), 427-435. https://doi.org/10.1680/macr.1999.51.6.427.
- Song, H.W., Kwon, S.J., Byun, K.J. and Park, C.K. (2006), "Predicting carbonation in early-aged cracked concrete", Cement Concrete Res., 36(5), 979-989. https://doi.org/10.1016/j.cemconres.2005.12.019.
- Suzuki, K., Nishikawa, T. and Ito, S. (1985), "Formation and carbonation of CSH in water", Cement Concrete Res., 15(2), 213-224. https://doi.org/10.1016/0008-8846(85)90032-8.
- Win, P.P., Watanabe, M. and Machida, A. (2004), "Penetration profile of chloride ion in cracked reinforced concrete", Cement Concrete Res., 34(7), 1073-1079. https://doi.org/10.1016/j.cemconres.2003.11.020.