DOI QR코드

DOI QR Code

Effects of nonlocal parameter on bending of Intermediate filaments: Formulation of Euler beam theory

  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed A. (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Baili, Jamel (Department of Computer Engineering, College of Computer Science, King Khalid University) ;
  • Khedher, Khaled Mohamed (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.02.24
  • Accepted : 2021.12.01
  • Published : 2021.12.25

Abstract

Cell components play vital role within the cell when the cell under goes deformation. These components are microtubules, microfilaments and intermediate filaments. Intermediate filaments are like thread and are of different types. Like microtubules and microfilaments these components also undergo the deformation and their dynamics affected when change occurs within cell. In the present study, bending of intermediate filaments are studied keeping the nonlocal effects under consideration. It is observed that the nonlocal parameter has a great impact on the dynamics of intermediate filaments. This study is made by the application of Euler beam theory.

Keywords

Acknowledgement

The Authors extend their thanks to the Deanship of Scientific Research at King Khalid University for funding this work through the small research groups under grant number RGP. 1/155/42.

References

  1. Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  2. Akbas, S.D. (2016), "Static analysis of a nano plate by using generalized differential quadrature method", Int. J. Eng. Appl. Sci., 8(2), 30-39. https://doi.org/10.24107/ijeas.252143.
  3. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  4. Chang, L. and Goldman, R.D. (2004), "Intermediate filaments mediate cytoskeletal crosstalk", Nat. Rev. Mole. Cell Biol., 5(8), 601-613. https://doi.org/10.1038/nrm1438.
  5. Civalek, O . and Demir, C . (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", App. Math. Model., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004.
  6. Crewther, W., Dowling, L., Steinert, P. and Parry, D. (1983), "Structure of intermediate filaments", Int. J. Biol. Macromole., 5, 267-274. https://doi.org/10.1016/0141-8130(83)90040-5.
  7. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. https://doi.org/10.12989/acc.2019.7.2.065.
  8. Domagala, W., Lubinski, J., Weber, K. and Osborn, M. (1986), "Intermediate filament typing of tumor cells in fine needle aspirates by means of monoclonal antibodies", Acta Cytol., 30(3), 214-224.
  9. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  10. Fletcher, D.A. and Mullins, R.D. (2010), "Cell mechanics and the cytoskeleton", Nat., 463, 485. https://doi.org/10.1038/nature08908.
  11. Franke, W.W., Schmid, E., Osborn, M. and Weber, K. (1978), "Different intermediate-sized filaments distinguished by immunofluorescence microscopy", Proc. Nation. Aca. Sci., 75, 5034-5038. https://doi.org/10.1073/pnas.75.10.5034.
  12. Gittes, F., Mickey, B., Nettleton, J. and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120, 923-934. https://doi.org/10.1083/jcb.120.4.923.
  13. Goldman, R.D., Cleland, M.M., Murthy, S.P., Mahammad, S. and Kuczmarski, E.R. (2012), "Inroads into the structure and function of intermediate filament networks", J. Struct. Biol., 177, 14-23. https://doi.org/10.1016/j.jsb.2011.11.017.
  14. Green, K.J., Virata, M.L.A., Elgart, G.W., Stanley, J.R. and Parry, D.A. (1992), "Comparative structural analysis of desmoplakin, bullous pemphigoid antigen and plectin: Members of a new gene family involved in organization of intermediate filaments", Int. J. Biol. Macromole., 14, 145-153. https://doi.org/10.1016/s0141-8130(05)80004-2.
  15. Gruenbaum, Y. and Foisner, R. (2015), "Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation", Annu. Rev. Biochem., 84, 131-164. https://doi.org/10.1146/annurevbiochem-060614-034115.
  16. Gruenbaum, Y., Margalit, A., Goldman, R.D., Shumaker, D.K. and Wilson, K.L. (2005), "The nuclear lamina comes of age", Nat. Rev. Mole. Cell Biol., 6, 21. https://doi.org/10.1038/nrm1550.
  17. Gyoeva, F. and Gelfand, V. (1992), "Coalignment of vimentin intermediate filaments with microtubules depends on kinesin", Trend. Cell Biol., 2, 9. https://doi.org/10.1038/353445a0.
  18. Hanukoglu, I. and Ezra, L. (2014), "Proteopedia entry: Coiled-coil structure of keratins", Biochem. Mole. Biol. Educ., 42(1), 93-94. https://doi.org/10.1002/bmb.20746
  19. Hanukoglu, I. and Fuchs, E. (1982), "The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins", Cell, 31(1), 243-252. https://doi.org/10.1016/0092-8674(82)90424-X.
  20. Hanukoglu, I. and Fuchs, E. (1983), "The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins", Cell, 33(3), 915-924. https://doi.org/10.1016/0092-8674(83)90034-X.
  21. Helfand, B.T., Chang, L. and Goldman, R.D. (2004), "Intermediate filaments are dynamic and motile elements of cellular architecture", J. Cell Sci., 117(2), 133-141. https://doi.org/10.1242/jcs.00936.
  22. Herrmann, H. and Aebi, U. (2004), "Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds", Annu. Rev. Biochem., 73, 749-789. https://doi.org/10.1146/annurev.biochem.73.011303.073823.
  23. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: from cell architecture to nanomechanics", Nat. Rev. Mole. Cell Biol., 8(7), 562-573. https://doi.org/10.1038/nrm2197.
  24. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V. and Aebi, U. (2007), "Intermediate filaments: From cell architecture to nanomechanics", Nat. Rev. Mole. Cell Biol., 8, 562. https://doi.org/10.1038/nrm2197.
  25. Ishikawa, H., Bischoff, R. and Holtzer, H. (1968), "Mitosis and intermediate-sized filaments in developing skeletal muscle", J. Cell Biol., 38(3), 538-555. https://doi.org/10.1083/jcb.38.3.538.
  26. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039.
  27. Karabinos, A., Riemer, D., Erber, A. and Weber, K. (1998), "Homologues of vertebrate type I, II and III intermediate filament (IF) proteins in an invertebrate: The IF multigene family of the cephalochordate Branchiostoma", FEBS Letter., 437(1-2), 15-18. https://doi.org/10.1016/S0014-5793(98)01190-9.
  28. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech. Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417.
  29. Lee, C.H., Kim, M.S., Chung, B.M., Leahy, D.J. and Coulombe, P.A. (2012), "Structural basis for heteromeric assembly and perinuclear organization of keratin filaments", Nat. Struct. Mole. Biol., 19(7), 707. https://doi.org/10.1038/nsmb.2330.
  30. Li, T. (2008), "A mechanics model of microtubule buckling in living cells", J. Biomech., 41(8), 1722-1729. https://doi.org/10.1016/j.jbiomech.2008.03.003.
  31. lijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. https://doi.org/10.12989/acc.2018.6.6.585.
  32. Lodish, H. et al. (2008), Molecular Cell Biology, Macmillan.
  33. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. https://doi.org/10.12989/acc.2017.5.5.539.
  34. Mofrad, M.R. and Kamm, R.D. (2006), Cytoskeletal Mechanics: Models and Measurements in Cell Mechanics, Cambridge University Press.
  35. Parry, D.A., Marekov, L.N., Steinert, P.M. and Smith, T.A. (2002), "A role for the 1A and L1 rod domain segments in head domain organization and function of intermediate filaments: Structural analysis of trichocyte keratin", J. Struct. Biol., 137(1-2), 97-108. https://doi.org/10.1006/jsbi.2002.4437.
  36. Qin, Z., Gautieri, A., Nair, A.K., Inbar, H. and Buehler, M.J. (2012), "Thickness of hydroxyapatite nanocrystal controls mechanical properties of the collagen-hydroxyapatite interface", Langmuir, 28, 1982-1992. https://doi.org/10.1021/la204052a.
  37. Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS One, 4(10), e7294. https://doi.org/10.1371/journal.pone.0007294.
  38. Qin, Z., Kreplak, L. and Buehler, M.J. (2009), "Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments", PloS One, 4, e7294. https://doi.org/10.1371/journal.pone.0007294.
  39. Quinlan, R., Hutchison, C. and Lane, B. (1995), "Intermediate filament proteins", Protein Profile, 2(8), 795.
  40. Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431.
  41. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC press.
  42. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  43. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  44. Shoeman, R.L., Huttermann, C., Hartig, R. and Traub, P. (2001), "Amino-terminal polypeptides of vimentin are responsible for the changes in nuclear architecture associated with human immunodeficiency virus type 1 protease activity in tissue culture cells", Mole. Biol. Cell, 12(1), 143-154. https://doi.org/10.1091/mbc.12.1.143.
  45. Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-A quadruple fluorescence labeling study", Biochem. Cell Biol., 70(10-11), 1174-1186. https://doi.org/10.1139/o92-163.
  46. Soltys, B.J. and Gupta, R.S. (1992), "Interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules-a quadruple fluorescence labeling study", Biochem. Cell Biol., 70, 1174-1186. https://doi.org/10.1139/o92-163.
  47. Strelkov, S.V., Herrmann, H. and Aebi, U. (2003), "Molecular architecture of intermediate filaments", Bioessays, 25, 243-251. https://doi.org/10.1002/bies.10246.
  48. Takemura, M., Gomi, H., Colucci-Guyon, E. and Itohara, S. (2002), "Protective role of phosphorylation in turnover of glial fibrillary acidic protein in mice", J. Neurosci., 22(16), 6972-6979. https://doi.org/10.1523/JNEUROSCI.22-16-06972.2002.
  49. Timoshenko, S. (1953), History of Strength of Materials Mcgraw-Hill Book Company, Inc., New York/Toronto/London.
  50. Traub, P. (2012), "Intermediate filaments: A review", Springer Science Business Media.
  51. Truesdell, C. (1960), The Rational Mechanics of Flexible or Elastic Bodies: 1638-1788, Leonhardi Euleri Opera Omnia.
  52. Wagner, O.I., Rammensee, S., Korde, N., Wen, Q., Leterrier, J.F. and Janmey, P.A. (2007), "Softness, strength and self-repair in intermediate filament networks", Exp. Cell Res., 313, 2228-2235. https://doi.org/10.1016/j.yexcr.2007.04.025.
  53. Wang, Q., Tolstonog, G.V., Shoeman, R. and Traub, P. (2001), "Sites of nucleic acid binding in type I-IV intermediate filament subunit proteins", Biochem., 40(34), 10342-1034. https://doi.org/10.1021/bi0108305.
  54. Yoon, M., Moir, R.D., Prahlad, V. and Goldman, R.D. (1998), "Motile properties of vimentin intermediate filament networks in living cells", J. Cell Biol., 143, 147-157. https://doi.org/10.1083/jcb.143.1.147.