참고문헌
- Abdul-Rahman, M., Al-Attar, A.A., Hamada, H.M. and Tayeh, B. (2020), "Microstructure and structural analysis of polypropylene fibre reinforced reactive powder concrete beams exposed to elevated temperature", J. Build. Eng., 29, 101167. https://doi.org/10.1016/j.jobe.2019.101167.
- Acda, M.N. (2010), "Sustainable use of waste chicken feather for durable and low cost building materials for tropical climates", Sustain. Agr. Tech. Plan. Manag., 353-366.
- Acda, M.N. (2010), "Waste chicken feather as reinforcement in cement-bonded composites", Philippine J. Sci., 139(2), 161-166.
- Agwa, I.S., Omar, O.M., Tayeh, B.A. and Abdelsalam, B.A. (2020), "Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete", Constr. Build. Mater., 235, 117541. https://doi.org/10.1016/j.conbuildmat.2019.117541.
- Al-Attar, A.A., Abdulrahman, M.B., Hamada, H.M. and Tayeh, B.A. (2020), "Investigating the behaviour of hybrid fibre-reinforced reactive powder concrete beams after exposure to elevated temperatures", J. Mater. Res. Tech., 9, 1966-1 977. https://doi.org/10.1016/j.jmrt.2019.12.029.
- Al Saffar, D.M., Al Saad, A.J. and Tayeh, B.A. (2019), "Effect of internal curing on behavior of high performance concrete: An overview", Case Stud. Constr. Mater., 10, e00229. https://doi.org/10.1016/j.cscm.2019.e00229.
- Ali, T.K.M., Hilal, N., Faraj, R.H. and Al-Hadithi, A.I. (2020), "Properties of eco-friendly pervious concrete containing polystyrene aggregates reinforced with waste pet fibers", Innov. Infrastruct. Solution., 5(3), 1-16. https://doi.org/10.1007/s41062-020-00323-w.
- Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.
- Amin, M., Tayeh, B.A. and Agwa, I.S. (2020), "Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete", J. Clean. Prod., 273, 123073. https://doi.org/10.1016/j.jclepro.2020.123073.
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates", Constr. Build. Mater., 302, 124196. https://doi.org/10.1016/j.conbuildmat.2021.124196.
- Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Engineering properties of self-cured normal and high strength concrete produced using polyethylene glycol and porous ceramic waste as coarse aggregate", Constr. Build. Mater., 299, 124243. https://doi.org/10.1016/j.conbuildmat.2021.124243.
- Aranberri, I., Montes, S., Azcune, I., Rekondo, A. and Grande, H.J. (2017), "Fully biodegradable biocomposites with high chicken feather content", Polym., 9(11), 593. https://doi.org/10.3390/polym9110593.
- ASTM A.S. (2019), Standard Specification for Portland Cement (ASTM C150/C150M-19A)
- ASTM C. (2002), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, Annual Book of ASTM Standards.
- ASTM C. (2003), Standard specification for concrete aggregates, American Society for Testing and Materials, Philadelphia, PA, USA.
- Babalola, R., Ayeni, A.O., Joshua, P.S., Ayoola, A.A., Isaac, U.O., Aniediong, U., Efeovbokhan, V.E. and Omoleye, J.A. (2020), "Synthesis of thermal insulator using chicken feather fibre in starch-clay nanocomposites", Heliyon, 6(11), e05384. https://doi.org/10.1016/j.heliyon.2020.e05384.
- Bansal, G. and Singh, V. (2016), "Review on chicken feather fiber (CFF) a livestock waste in composite material development", Int. J. Waste Resour, 6(2), 1000254. https://doi.org/10.4172/2252-5211.1000254.
- Bansal, G., Singh, V., Gope, P. and Gupta, T. (2017), "Application and properties of chicken feather fiber (CFF) a livestock waste in composite material development", J. Graphic Era U., 5(1), 16-24.
- Bessa, J., Souza, J., Lopes, J., Sampaio, J., Mota, C., Cunha, F. and Fangueiro, R. (2017), "Characterization of thermal and acoustic insulation of chicken feather reinforced composites", Proc. Eng., 200, 472-479. https://doi.org/10.1016/j.proeng.2017.07.066.
- Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane, S. (2016), "Flexural behaviour of steel fibre-reinforced concrete under cyclic loading", Constr. Build. Mater., 126, 253-262. https://doi.org/10.1016/j.conbuildmat.2016.09.035.
- Brandelli, A., Sala, L. and Kalil, S.J. (2015), "Microbial enzymes for bioconversion of poultry waste into added-value products", Food Res. Int., 73, 3-12. https://doi.org/10.1016/j.foodres.2015.01.015.
- British Standard (1881), Testing Concrete-Part 116, Method for Determination of Compressive Strength of Concrete Cubes.
- Buyukkaya, K. (2017), "Effects of the fiber diameter on mechanic properties in polymethyl-methacrylate composites reinforced with goose feather fiber", Mater. Sci. Appl., 8(11), 811-827. https://doi.org/10.4236/msa.2017.811059.
- C143 A. (2010), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International West Conshohocken, PA, USA.
- Concrete, A.I.C.C.o. and Aggregates, C. (2010), Standard Test Method for Flexural Strength of Concrete (using simple beam with center-point loading), ASTM International.
- Concrete, A.I.C.C.o. and Aggregates, C. (2017), Standard test method for splitting tensile strength of cylindrical concrete specimens1, ASTM international.
- Dalhat, M., Osman, S., Alhuraish, A.A.A., Almarshad, F.K., Qarwan, S.A. and Adesina, A.Y. (2020), "Chicken feather fiber modified hot mix asphalt concrete: Rutting performance, durability, mechanical and volumetric properties", Constr. Build. Mater., 239, 117849. https://doi.org/10.1016/j.conbuildmat.2019.117849.
- de Azevedo, A.R., Marvila, M.T., Tayeh, B.A., Cecchin, D., Pereira, A.C. and Monteiro, S.N. (2021), "Technological performance of acai natural fibre reinforced cement-based mortars", J. Build. Eng., 33, 101675. https://doi.org/10.1016/j.jobe.2020.101675.
- El-Hawary, M.M. and Hamoush, S.A. (1994), "Strength of concrete reinforced with treated feathers", Constr. Build. Mater., 8(3), 173-176. https://doi.org/10.1016/j.jobe.2020.101675.
- Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021a), "Mechanical and durability properties of ultra-high performance concrete incorporated with various nano waste materials under different curing conditions", J. Build. Eng., 43, 102569. https://doi.org/10.1016/j.jobe.2021.102569.
- Faried, A.S., Mostafa, S.A., Tayeh, B.A. and Tawfik, T.A. (2021b), "The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties", Constr. Build. Mater., 290, 123279. https://doi.org/10.1016/j.conbuildmat.2021.123279.
- Fayomi, O., Babaremu, K., Akande, I., Agboola, O. and Anyanwu, B. (2020), "Potential of bio-wastes in the development of composites for manufacturing application", Mater. Today Proc., 38(5), 2353-2357. https://doi.org/10.1016/j.matpr.2020.06.539.
- Gumus, M. and Arslan, A. (2019), "Effect of fiber type and content on the flexural behavior of high strength concrete beams with low reinforcement ratios", Struct., 20, 10-15. https://doi.org/10.1016/j.istruc.2019.02.018.
- Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fiber concrete with and without silica fume", J. Clean. Prod., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081.
- Haido, J. H., Zainalabdeen, M.A. and Tayeh, B.A. (2021), "Experimental and numerical studies on flexural behavior of high strength concrete beams containing waste glass", Adv. Concrete Constr., 11(3), 239-253. https://doi.org/10.12989/acc.2021.11.3.239.
- Haido, J.H., Tayeh, B.A., Majeed, S.S. and Karpuzcu, M. (2021a), "Effect of high temperature on the mechanical properties of basalt fibre self-compacting concrete as an overlay material", Constr. Build. Mater., 268, 121725. https://doi.org/10.1016/j.conbuildmat.2020.121725.
- Hamoush, S.A. and El-Hawary, M.M. (1994), "Feather fiber reinforced concrete", Concrete Int., 16(6), 33-35.
- Hara, N., Morisada, S., Ohto, K. and Kawakita, H. (2014), "Papain activity in dextran solution for keratin hydrolysis", Adv. Enzyme Res., 2(1), 43906. https://doi.org/10.4236/aer.2014.21005.
- Hilal, N., Al Saffar, D.M. and Ali, T.K.M. (2021), "Effect of egg shell ash and strap plastic waste on properties of high strength sustainable self-compacting concrete", Arab. J. Geosci., 14(4), 1-11. https://doi.org/10.1007/s12517-021-06654-x.
- Hilal, N., Ali, T.K.M. and Tayeh, B.A. (2020), "Properties of environmental concrete that contains crushed walnut shell as partial replacement for aggregates", Arab. J. Geosci., 13(16), 1-9. https://doi.org/10.1007/s12517-020-05733-9.
- Ibrahim, O.M.O., Heniegal, A.M., Ibrahim, K.G. and Agwa, I.S. (2020), "Effect of horizontal joints on structural behavior of sustainable self-compacting reinforced concrete beams", Adv. Concrete Constr., 10(5), 455-462. https://doi.org/10.12989/acc.2020.10.5.455.
- Jaradat, O.Z., Gadri, K., Tayeh, B.A. and Guettalaa, A. (2021), "Influence of sisal fibres and rubber latex on the engineering properties of sand concrete", Struct. Eng. Mech., 80(1), 47-62. https://doi.org/10.12989/sem.2021.80.1.047.
- Karshan, M. (1930), "The chemistry and staining reactions of keratin", J. Dental Res., 10(2), 181-186. https://doi.org/10.1177/00220345300100020401.
- Kim, J. and Lee, H. (2021), "Thermomechanical behavior of alkali-activated slag/fly ash composites with pva fibers exposed to elevated temperatures", Adv. Concrete Constr., 11(1), 11. https://doi.org/10.12989/acc.2021.11.1.011.
- Kodak, S., Gharge, T. and Chavan, V. (2019), "Microbial degradation of poultry feather wastes under the influence of temperature and ph a€" A review", Int. J. Envir. Sci. Nat. Res., 21(3), 87-92. https://doi.org/10.19080/IJESNR.2019.21.556063.
- M-19 A.C.C. (2019), Standard specification for chemical admixtures for concrete, Annual book of astm standards, ASTM International West Conshohocken, PA, USA.
- Manginsay, G.P. and Cabahug, R.G. (2015), "Chicken feathers as substitute for fine aggregates in concrete", Mindanao J. Sci. Tech., 13.
- Mansour, W. and Tayeh, B.A. (2020), "Shear behaviour of RC beams strengthened by various ultrahigh performance fibre-reinforced concrete systems", Adv. Civil Eng., 2020, 2139054. https://doi.org/10.1155/2020/2139054.
- Mendoza, R.C., Grande, J.O. and Acda, M.N. (2019), "Effect of keratin fibers on setting and hydration characteristics of portland cement", J. Nat. Fiber., 18(11), 1801-1808. https://doi.org/10.1080/15440478.2019.1701604.
- Mrajji, O., Wazna, M.E., Boussoualem, Y., Bouari, A.E. and Cherkaoui, O. (2019), "Feather waste as a thermal insulation solution: Treatment, elaboration and characterization", J. Indust. Textile., 50, 1674-1697. https://doi.org/10.1177/1528083719869393.
- Ouakarrouch, M., Laaroussi, N. and Garoum, M. (2020), "Thermal characterization of a new bio-composite building material based on plaster and waste chicken feathers", Renew. Ener. Envir. Sustain., 5(2), 7. https://doi.org/10.1051/rees/2019011.
- Palmquist, S.M. and Jansen, D.C. (2001), "Postpeak strain-stress relationship for concrete in compression", Mater. J., 98(3), 213-219.
- Pavithra, C., Arokiaprakash, A. and Maheshwari, A. (2020), "Behaviour of concrete adding chicken feather as fibre with partial replacement of cement with cashewnut shell powder", Mater. Today Proc., 43(2), 1173-178. https://doi.org/10.1016/j.matpr.2020.08.731.
- Peng, Z., Mao, X., Zhang, J., Du, G. and Chen, J. (2019), "Effective biodegradation of chicken feather waste by co-cultivation of keratinase producing strains", Microbial Cell Fact., 18(1), 1-11. https://doi.org/10.1186/s12934-019-1134-9.
- Perumal, R. and Prabakaran, V. (2020), "Estimating the compressive strength of hpfrc containing metallic fibers using statistical methods and anns", Adv. Concrete Constr., 10(6), 479. https://doi.org/10.12989/acc.2020.10.6.479.
- Poole, A.J., Church, J.S. and Huson, M. G. (2009), "Environmentally sustainable fibers from regenerated protein", Biomacromolecules, 10(1), 1-8. https://doi.org/10.1021/bm8010648.
- Saad, M., Agwa, I.S., Abdelsalam Abdelsalam, B. and Amin, M. (2020), "Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2020.1780352.
- Schmidt, W. (1998), "Innovative feather utilization strategies", Proceedings of the 1998 National Poultry Waste Management Symposium.
- Taskin, M. and Kurbanoglu, E. (2011), "Evaluation of waste chicken feathers as peptone source for bacterial growth", J. Appl. Microb., 111(4), 826-834. https://doi.org/10.1111/j.1365-2672.2011.05103.x.
- Tayeh, B.A., Al Saffar, D.M. and Alyousef, R. (2020), "The utilization of recycled aggregate in high performance concrete: A review", J. Mater. Res. Tech., 9(4), 8469-8481. https://doi.org/10.1016/j.jmrt.2020.05.126.
- Tesfaye, T., Sithole, B., Ramjugernath, D. and Mokhothu, T. (2018), "Valorisation of chicken feathers: Characterisation of thermal, mechanical and electrical properties", Sustain. Chem. Pharm., 9, 27-34. https://doi.org/10.1016/j.scp.2018.05.003.
- Tobbala, D., Abdelsalam, B.A. and Agwa, I.S. (2020), "Bond performance of a hybrid coating zinc-rich epoxy incorporating nano-ferrite for steel rebars subjected to high temperatures in concrete", J. Build. Eng., 32, 101698. https://doi.org/10.1016/j.jobe.2020.101698.
- Vaha-Nissi, M., Lahtinen, P., Nuutinen, E., Kaljunen, T. and Pohler, T. (2019), "Films from an aqueous suspension of alkaline pretreated and fine milled chicken feathers", Mater. Sci. Appl., 11(1), 27-43. https://doi.org/10.4236/msa.2020.111003.
- Ward, W., Binkley, C. and Snell, N. (1955), "Amino acid composition of normal wools, wool fractions, mohair, feather, and feather fractions", Textile Res. J., 25(4), 314-325. https://doi.org/10.1177/004051755502500403.
- Zeyad, A.M., Johari, M.A.M., Abutaleb, A. and Tayeh, B.A. (2021b), "The effect of steam curing regimes on the chloride resistance and pore size of high-strength green concrete", Constr. Build. Mater., 280, 122409. https://doi.org/10.1016/j.conbuildmat.2021.122409.
- Zeyad, A.M., Johari, M.A.M., Alharbi, Y.R., Abadel, A.A., Amran, Y.M., Tayeh, B.A. and Abutaleb, A. (2021a), "Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete", J. Build. Eng., 38, 102204. https://doi.org/10.1016/j.jobe.2021.102204.