Acknowledgement
The authors wish to acknowledge the National Natural Science Foundation of China (Nos. 51478362, 51778461). And this research is funded (No. 2016-KF08) by Shanghai City Housing and Urban Construction Management Committee, Shanghai, China.
References
- Ahmed, S.F.U., Maalej, M. and Paramasivam, P. (2007), "Flexural responses of hybrid steel-polyethylene fiber reinforced cement composites containing high volume fly ash", Constr. Build. Mater., 21(5), 1088-1097. https://doi.org/10.1016/j.conbuildmat.2006.01.002.
- Algassem, O., Li, Y. and Aoude, H. (2019), "Ability of steel fibers to enhance the shear and flexural behavior of high-strength concrete beams subjected to blast loads", Eng. Struct., 199, 109611. https://doi.org/10.1016/j.engstruct.2019.109611.
- Algburi, A.H.M., Sheikh, M.N. and Hadi, M.N.S. (2019), "Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete", Front. Struct. Civil Eng., 13(4), 998-1006. https://doi.org/10.1007/s11709-019-0533-7.
- Awwad, E., Mabsout, M., Hamad, B., Farran, M.T. and Khatib, H. (2012), "Studies on fiber-reinforced concrete using industrial hemp fibers", Constr. Build Mater., 35, 710-717. https://doi.org/10.1016/j.conbuildmat.2012.04.119.
- Bernard, F. and Kamali-Bernard, S. (2015), "Numerical study of ITZ contribution on mechanical behavior and diffusivity of mortars", Comput. Mater. Sci., 102, 250-257. https://doi.org/10.1016/j.commatsci.2015.02.016.
- Code for Design of Concrete Structures in China (GB50010-2010), Architecture publishing and Media Co. Ltd, Beijing.
- Common Portland Cement in China (GB175-2007), China Building Materials Federation, Beijing.
- Deshpande, A.A., Kumar, D. and Ranade, R. (2019), "Influence of high temperatures on the residual mechanical properties of a hybrid fiber-reinforced strain-hardening cementitious composite", Constr. Build. Mater., 208, 283-295. https://doi.org/10.1016/j.conbuildmat.2019.02.129.
- Ding, Y., Yu, J.T., Yu, K.Q. and Xu, S.L. (2018), "Basic mechanical properties of ultra-high ductility cementitious composites: From 40 MPa to 120 MPa", Compos. Struct., 185, 634-645. https://doi.org/10.1016/j.compstruct.2017.11.034.
- Hanif, A., Parthasarathy, P., Lu, Z.Y., Sun, M. and Li, Z.J. (2017), "Fiber-reinforced cementitious composites incorporating glass cenospheres-Mechanical properties and microstructure", Constr. Build. Mater., 154, 529-538. https://doi.org/10.1016/j.conbuildmat.2017.07.235.
- Khelifa, H., Bezazi, A., Boumediri, H., del Pino, G.G., Reis, P.N.B., Scarpa, F. and Dufresne, A. (2021), "Mechanical characterization of mortar reinforced by date palm mesh fibers: Experimental and statistical analysis", Constr. Build. Mater., 300, 124067. https://doi.org/10.1016/j.conbuildmat.2021.124067.
- Khlef, F.L., Barbosa, A.R. and Ideker, J.H. (2019), "Tension and cyclic behavior of high-performance fiber-reinforced cementitious composites", J. Mater. Civ. Eng., 31(10), 04019220. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002844.
- Lee, S.F. and Jacobsen, S. (2011), "Study of interfacial microstructure, fracture energy, compressive energy and debonding load of steel fiber-reinforced mortar", Mater. Struct., 44(8), 1451-1465. https://doi.org/10.1617/s11527-011-9710-4.
- Lepech, M.D. and Li, V.C. (2009), "Water permeability of engineered cementitious composites", Cement Concrete Compos., 31(10), 744-753. https://doi.org/10.1016/j.cemconcomp.2009.07.002.
- Li, H.D. and Xu, S.L. (2016), "Rate dependence of ultra high toughness cementitious composite under direct tension", J. Zhejiang U. Sci. A, 17(6), 417-426. https://doi.org/10.1631/jzus.A1600031.
- Li, M. and Li, V.C. (2011), "Cracking and healing of Engineered Cementitious Composites under chloride environment", ACI Mater. J., 108(3), 333-340.
- Li, V.C. and Leung, C.K.Y. (1992), "Steady-state and multiple cracking of short random fiber composites", J. Eng. Mech. ASCE, 118(11), 2246-2264. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246).
- Li, V.C., Wang, S.X. and Wu, C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI Mater. J., 98(6), 483-492.
- Li, V.C., Wang, Y. and Backer, S. (1990), "Effect of inclining angle, bundling and surface treatment on synthetic fiber pull-out from a cement matrix", Compos., 21, 132-140. https://doi.org/10.1016/0010-4361(90)90005-H.
- Liu, Y.S., Zhou, X.M., Lv, C.B., Yang, Y.Z. and Liu, T.A. (2018), "Use of silica fume and GGBS to improve frost resistance of ECC with high-volume fly ash", Adv. Civil Eng., 2018, 7987589. https://doi.org/10.1155/2018/7987589.
- Ma, Z.M., Zhao, T.J. and Yao, X.C. (2016), "Influence of applied loads on the permeability behavior of ultra high performance concrete with steel fibers", J. Adv. Concrete Tech., 14(12), 770-781. https://doi.org/10.3151/jact.14.770.
- Murthy, A.R. and Ganesh, P. (2019), "Effect of steel fibres and nano silica on fracture properties of medium strength concrete", Adv. Concrete Constr., 7(3), 143-150. https://doi.org/10.12989/acc.2019.7.3.143.
- Murthy, A.R., Iyer, N.R. and Prasad B. (2013), "Evaluation of mechanical properties for high strength and ultrahigh strength concretes", Adv. Concrete Constr., 1(4), 341-358. https://doi.org/10.12989/acc2013.1.4.341.
- Naaman, A.E. and Reinhardt, H.W. (1996), High Performance Fiber Reinforced Cement Composites, First edition, Springer, USA.
- Noorvand, H., Arce, G.A. and Hassan, M.M. (2021), "Evaluation of the effects of engineered cementitious composites (ECC) plasticity on concrete pavement performance", Int. J. Pave. Eng., 1-13. https://doi.org/10.1080/10298436.2021.1954180.
- Paul, S.C., Van Zijl, G.P.A.G., Babafemi, A.J. and Tan, M.J. (2016), "Chloride ingress in cracked and uncracked SHCC under cyclic wetting-drying exposure", Constr. Build. Mater., 114, 232-240. https://doi.org/10.1016/j.conbuildmat.2016.03.206.
- Prakasam, G., Murthy, A.R. and Reheman, M.S. (2020), "Mechanical, durability and fracture properties of nanomodified FA/GGBS geopolymer mortar", Mag. Concrete Res., 72(4), 207-216. https://doi.org/10.1680/jmacr.18.00059.
- Prakasam, G., Murthy, A.R., Kumar S.S., Reheman M.S. and Iyer N.R. (2016), "Effect of nanosilica on durability and mechanical properties of high-strength concrete", Mag. Concrete Res., 68(5), 229-236. https://doi.org/10.1680/jmacr.14.00338.
- Prem, P.R., Murthy, A.R. and Bharatkumar, B.H. (2015), "Influence of curing regime and steel fibres on the mechanical properties of UHPC", Mag. Concrete Res., 67(18), 988-1002. https://doi.org/10.1680/macr.14.00333.
- Qiu, J.S., Tan, H.S. and Yang, E.H. (2016), "Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites", Cement Concrete Compos., 73, 203-212. https://doi.org/10.1016/j.cemconcomp.2016.07.013.
- Rong, Z.D., Ding, J.Y., Cui, Z.J. and Sun, W. (2019), "Mechanical properties and microstructure of ultra-high performance cement-based composite incorporating RHA", Adv. Cement Res., 31(10), 472-480. https://doi.org/10.1680/jadcr.17.00209.
- Sheta, A., Ma, X., Yan, Z.G., ElGawady, M.A., Mills, J.E., Singh, A. and Abd-Elaal, E. (2021). "Structural performance of novel thin-walled composite cold-formed steel/PE-ECC beams", Thin Wall. Struct., 162, 107586. https://doi.org/10.1016/j.tws.2021.107586.
- Subedi, S., Arce, G.A., Hassan, M.M., Barbato, M. and Mohammad, L.N. (2021), "Effect of raw sugarcane bagasse ash as sand replacement on the fiber-bridging properties of Engineered Cementitious Composites", Transport. Res. Record, 2675(11), 1028-1042. https://doi.org/10.1177/03611981211023762.
- Teng, S., Afroughsabet, V. and Ostertag, C.P. (2018), "Flexural behavior and durability properties of high performance hybrid-fiber-reinforced concrete", Constr. Build. Mater., 182, 504-515. https://doi.org/10.1016/j.conbuildmat.2018.06.158.
- Wang, S.S., Le, T.N.L., Poh, L.H., Feng, H.J. and Zhang, M.H. (2016), "Resistance of high-performance fiber-reinforced cement composites against high-velocity projectile impact", Int. J. Impact Eng., 95, 89-104. https://doi.org/10.1016/j.ijimpeng.2016.04.013.
- Wang, S.S., Le, T.N.L., Poh, L.H., Quek, S.T. and Zhang, M.H. (2017), "Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete", Constr. Build. Mater., 136, 31-43. https://doi.org/10.1016/j.conbuildmat.2016.12.183.
- Wang, Y.C., Liu, F.C., Yu, J.T., Dong, F.Y., Ye, J.H. (2020), "Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites", Constr. Build. Mater., 251, 118917. https://doi.org/10.1016/j.conbuildmat.2020.118917.
- Wang, Z.B., Zhang, J., Wang, J.H. and Shi, Z.J. (2015), "Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio", J. Compos. Mater., 49(18), 2169-2186. https://doi.org/10.1177/0021998314542450.
- Wu, H.L., Yu, J., Du, Y.J. and Li, V.C. (2021), "Mechanical performance of MgO-doped Engineered Cementitious Composites (ECC)", Cement Concrete Compos., 115, 103857. https://doi.org/10.1016/j.cemconcomp.2020.103857.
- Yang, E.H. and Li, V.C. (2012), "Tailoring engineered cementitious composites for impact resistance", Cement Concrete Res., 42(8), 1066-1071. https://doi.org/10.1016/j.cemconres.2012.04.006.
- Yu, J. and Leung, C.K.Y. (2017), "Strength improvement of strain-hardening cementitious composites with ultrahigh-volume fly ash", J. Mater. Civil Eng., 29(9), 05017003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001987.
- Yu, J., Chen, Y.X. and Leung, C.K.Y. (2019), "Mechanical performance of Strain-Hardening Cementitious Composites (SHCC) with hybrid polyvinyl alcohol and steel fibers", Compos. Struct., 226, 111198. https://doi.org/10.1016/j.compstruct.2019.111198.
- Yu, J.T., Jiang, F.M., Yu, K.Q., Dong, F.Y. and Duan, X.Z. (2019), "Deformability enhancement of fiber-reinforced cementitious composite by incorporating recycled powder," J. Reinf. Plast. Compos., 39, 119-131. https://doi.org/10.1177/0731684419877251.
- Yu, J.T., Lu, K.K., Xu, Q.F., Li, Z.H. and Ouyang, L.J. (2019), "Feasibility of using seawater to produce ultra-high ductile cementitious composite for construction without steel reinforcement", Struct. Concrete, 20(2), 774-785. https://doi.org/10.1002/suco.201800116.
- Yu, K.Q., Dai, J.G., Lu, Z.D. and Leung, C.K.Y. (2015), "Mechanical properties of Engineered Cementitious Composites subjected to elevated temperatures", J. Mater. Civil Eng., 27(10), 04014268. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001241.
- Yu, K.Q., Wang, Y.C., Yu, J.T. and Xu, S.L. (2017), "A strain-hardening cementitious composites with the tensile capacity up to 8%", Constr. Build. Mater., 137, 410-419. https://doi.org/10.1016/j.conbuildmat.2019.06.067.
- Zhang, J., Maalej, M. and Quek, S.T. (2007), "Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact", J. Mater. Civil Eng., 19(10), 855-863. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855).
- Zhang, J., Wang, Q. and Wang, Z.B. (2017), "Properties of polyvinyl alcohol-steel hybrid fiber-reinforced composite with high-strength cement matrix", J. Mater. Civil Eng., 29(7), 04017026. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001868.
- Zhang, J.S. and Zhao, Y.H. (2017), "The mechanical properties and microstructure of ultra-high-performance concrete containing various supplementary cementitious materials", J. Sustain. Cement Based Mater., 6, 254-266. https://doi.org/10.1080/21650373.2016.1262798.
- Zhao, J.J., Yan, C.W., Liu, S.G., Zhang, J. and Cao, Y.F. (2021), "Effect of expansive agent and curing condition on the properties of low-cost polyvinyl alcohol engineered cementitious composites", Constr. Build. Mater., 268, 121169. https://doi.org/10.1016/j.conbuildmat.2020.121169.
- Zhong, L. and Li, V.C. (1997), "Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces", J. Mech. Phys. Solid., 45(5), 763-787. https://doi.org/10.1016/0010-4361(90)90005-H.
- Zhu, Y., Yang, Y.Z. and Yao, Y. (2012), "Autogenous self-healing of engineered cementitious composites under freeze-thaw cycles", Constr. Build. Mater., 34, 522-530. https://doi.org/10.1016/j.conbuildmat.2012.03.001.