DOI QR코드

DOI QR Code

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh (Department of Building and Real Estate, Hong Kong Polytechnic University) ;
  • Yam, Michael C.H. (The Chinese National Engineering Research Center (CNERC))
  • 투고 : 2020.10.08
  • 심사 : 2021.09.16
  • 발행 : 2021.12.25

초록

Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

키워드

과제정보

This research is funded by a grant from the Chinese National Engineering Research Centre for Steel Connection, The Hong Kong Polytechnic University (Project No. 1- BBV 4).

참고문헌

  1. Abaqus, V.6.14 (2014), 6.14 Documentation, Dassault Systemes Simulia Corporation.
  2. Aktas, M. and Balcioglu, H.E. (2013), "Buckling behavior of pultruded composite beams with circular cutouts", Steel Compos. Struct., Int. J., 17(4), 359-370. https://doi.org/10.12989/scs.2014.17.4.359
  3. Alfano, G. and Crisfield, M.A. (2001), "Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues", Int. J. Numer. Meth. Eng., 50, 1701-1736. https://doi.org/10.1002/nme.93
  4. Ari-Gur, J. and Simonetta, S.R. (1997), "Dynamic pulse buckling of rectangular composite plates", Compos. Part B Eng., 28, 301-308. https://doi.org/10.1016/S1359-8368(96)00028-5
  5. Baba, B.O. (2007), "Buckling behavior of laminated composite plates", J. Reinf. Plast. Compos., 26, 16371655. https://doi.org/10.1177/0731684407079515
  6. Baddour, N. (2008), "Hamilton's principle for the derivation of equations of motion, Leading-Edge", Appl. Math. Model. Res., 155-182.
  7. Bibo, G.A. and Hogg, P.J. (1996), "The role of reinforcement architecture on impact damage mechanisms and post-impact compression behaviour", J. Mater. Sci., 3b1, 1115-1137. https://doi.org/10.1007/BF00353091
  8. Birman, V. (2008), "Shape memory elastic foundation and supports for passive vibration control of composite plates", Int. J. Solids Struct., 45, 320-335. https://doi.org/10.1016/j.ijsolstr.2007.08.023
  9. Brinson, L.C. (1993), "One-dimensional constitutive behavior of shape memory alloys: thermo mechanical derivation with non-constant material functions and redefined martensite internal variable", J. Intell. Mater. Syst. Struct., 4(2), 229-242. https://doi.org/10.1177/1045389X9300400213
  10. Budiansky, B. (1962), "Axisymmetric dynamic buckling of clamped shallow spherical shells", NASA TN, 1510, 597-606.
  11. Budiansky, B. and Hutchinson, J.W. (1966a), "Dynamic buckling of imperfection-sensitive structures", In: Applied Mechanics, pp. 636-651.
  12. Budiansky, B. and Hutchinson, J.W. (1966b), "Dynamic buckling estimates", AIAAJ, 4(3), 525-530. https://doi.org/10.2514/3.3468
  13. Cafarova, F.I., Akbarov, S.D. and Yahnioglu, N. (2017), "Buckling delamination of the PZT/Metal/PZT sandwich circular plate disc with penny-shaped interface cracks", Smart Struct. Syst., Int. J., 19(2), 163-179. https://doi.org/10.12989/sss.2017.19.2.163
  14. Caneva, C., Olivieri, S., Santulli, C. and Bonifazi, G. (1993), "Impact damage evaluation on advanced stitched composites by means of acoustic emission and image analysis", Compos. Struct., 25, 121-128. https://doi.org/10.1016/0263-8223(93)90158-M
  15. Cohades, A., Hostettler, N., Pauchard, M., Plummer, C.J.G. and Michaud, V. (2018), "Stitched shape memory alloy wires enhance damage recovery in self healing fibre-reinforced polymer composites", Compos. Sci. Technol., 161, 22-31. https://doi.org/10.1016/j.compscitech.2018.03.040
  16. Damanpack, A.R., Bodaghi, M., Liao, W.H., Aghdam, M.M. and Shakeri, M. (2015), "A simple and efficient 1- D macroscopic model for shape memory alloys considering ferro-elasticity effect", Smart Struct. Syst., Int. J., 16(4), 641-665. https://doi.org/10.12989/sss.2015.16.4.641
  17. Dexter, H. and Funk, J. (1986), "Impact resistance and interlaminar fracture toughness of through-the-thickness reinforced graphite/epoxy", Proceedings of the 27th Structures, Structural Dynamics and Materials Conference, 1020. https://doi.org/10.2514/6.19861020
  18. Dransfield, K., Baillie, C. and Mai, Y.-W. (1993), "On stitching as a method for improving the delamination resistance of CFRPs", Minerals, Metals and Materials Society, Warrendale, PA, USA.
  19. Dransfield, K., Baillie, C. and Mai, Y.-W. (1995), "Improving the delamination resistance of CFRP by stitching-a review", Compos. Sci. Technol., 50, 305-317. https://doi.org/10.1016/0266-3538(94)90019-1
  20. Dransfield, K.A., Jain, L.K. and Mai, Y.-W. (1998), "On the effects of stitching in CFRPs-I. Mode I delamination toughness", Compos. Sci. Technol., 58, 815-827. https://doi.org/10.1016/S0266-3538(97)00229-7
  21. Elices, M., Guinea, G.V., Gomez, J. and Planas, J. (2002), "The cohesive zone model: advantages, limitations and challenges", Eng. Fract. Mech., 69, 137-163. https://doi.org/10.1016/S0013-7944(01)00083-2
  22. Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, T.A. (2020), "Free vibration of FGG PLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., Int. J., 36(6), 711-727. https://doi.org/10.12989/scs.2020.36.6.711
  23. Ghaznavi, V. and Shariyat, M. (2017), "Non-linear layerwise dynamic response analysis of sandwich plates with soft auxetic cores and embedded SMA wires experiencing cyclic loadings", Compos. Struct., 171, 185-197. https://doi.org/10.1016/j.compstruct.2017.03.012
  24. Geubelle, P.H. and Baylor, J.S. (2017), "Impact-induced delamination of composites: a 2D simulation", Compos. Part B Eng., 29, 589-602. https://doi.org/10.1016/S1359-8368(98)00013-4
  25. Hu, F.Z., Soutis, C. and Edge, E.C. (1997), "Interlaminar stresses in composite laminates with a circular hole", Compos. Struct., 37, 223-232. https://doi.org/10.1016/S0263-8223(97)80014-1
  26. Huebner, K.H., Dewhirst, D.L., Smith, D.E. and Byrom, T.G. (2001), The Finite Element Method for Engineers, John Wiley & Sons.
  27. Ibrahim, H.H., Tawfik, M. and Negm, H.M. (2011), "Thermal buckling and nonlinear flutter behavior of shape memory alloy hybrid composite plates", J. Vib. Control, 17, 321-333. https://doi.org/10.1177/1077546309353368
  28. Jain, L.K. and Mai, Y.-W. (1994), "Analysis of stitched laminated ENF specimens for interlaminar mode II fracture toughness", Int. J. Fract., 68, 219-244. https://doi.org/10.1007/BF00013069
  29. Jain, L.K. and Mai, Y.-W. (1995), "Determination of mode II delamination toughness of stitched laminated composites", Compos. Sci. Technol, 55, 241-253. https://doi.org/10.1016/0266-3538(95)00089-5
  30. Jankowski, J. (2008), "Dynamic response of thin-walled composite beam-columns with closed and open crosssections", Mech. Mech. Eng., 12(3), 255-265.
  31. Khorasani, M., Eyvazian, A., Karbon, M., Tounsi, A., Lampani, L. and Sebaey, T.A. (2020), "Magnetoelectro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects", Smart Struct. Syst., Int. J., 26(3), 331-343. https://doi.org/10.12989/sss.2020.26.3.331
  32. Koning, C. and Taub, J. (1934), Impact buckling of thin bars in the elastic range hinged at both ends.
  33. Kowal-Michalska, K. (2010), "About some important parameters in dynamic buckling analysis of plated structures subjected to pulse loading", Mech. Eng., 14, 269-279.
  34. Kubiak, T. (2013), Static and dynamic buckling of thin-walled plate structures, Springer, pp. 3905-3919.
  35. Kumar, P. and Srinivasa, C.V. (2020), "On buckling and free vibration studies of Sandwich plates and cylindrical shells: a review", J. Thermoplast. Compos. Mater., 33(5), 673-724. https://doi.org/10.1177/0892705718809810
  36. Lau, K.T., Ling, H.Y. and Zhou, L.M. (2004), "Low velocity impact on shape memory alloy stitched composite plates", Smart Mater. Struct., 13(2), 364-370. https://doi.org/10.1088/0964-1726/13/2/015
  37. Lee, I., Roh, J.-H. and Oh, I.-K. (2003), "Aero thermoelastic phenomena of aerospace and composite structures", J. Therm. Stress., 26, 525-546. https://doi.org/10.1080/713855957
  38. Leissa, A.W. (1987), "A review of laminated composite plate buckling", Appl. Mech. Rev., 40(5), 575-591. https://doi.org/10.1115/1.3149534
  39. Li, Z. (2005), "Computational analyses and simulations of fluid-structure interactions applied to stented abdominal aortic aneurysms", North Carolina State University.
  40. Mahieddinet, A., Ouali, M. and Mazouz, A. (2015), "Modeling and simulation of partially delaminated composite beams", Steel Compos. Struct., Int. J., 18(5), 1119-1127. https://doi.org/10.12989/scs.2015.18.5.1119
  41. Manfredi, E., Cohades, A., Richard, I. and Michaud, V. (2014), "Assessment of solvent capsule based healing for woven E-glass fibre-reinforced polymers", Smart Mater. Struct., 24(1), 015019. https://doi.org/10.1088/0964-1726/24/1/015019
  42. Marshall, I.H. (1987), "Membrane stress distributions in post-buckled composite plates with circular holes", Compos. Struct., 4, 557.
  43. Massabo, R. and Cox, B.N. (1999), "Concepts for bridged mode II delamination cracks", J. Mech. Phys. Solids., 47, 1265-1300. https://doi.org/10.1016/S0022-5096(98)00107-0
  44. Mouritz, A.P. (1995), "The flexural strength of stitched GRP laminates following underwater explosion shock loading", Proceedings of the 10th International Conference on Composite Materials. V. Structures, pp. 695-701.
  45. Mouritz, A.P., Leong, K.H. and Herszberg, I. (1997), "A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites", Compos. Part A Appl. Sci. Manuf., 28, 979-991. https://doi.org/10.1016/S1359-835X(97)00057-2
  46. Nemeth, M.P., Stein, M. and Johnson, E.R. (1986), "An Approximate Buckling Analysis for Rectangular Orthotropic Plates with Centrally Located Cutouts", Tech. rep.
  47. Nishimura, A. and Aotani, H. (1986), "New fabric structures for composites", Compos. Recent Adv. Japan United States, 29-36.
  48. Palmer, R.J., Dow, M.B. and Smith, D.L. (1991), "Development of stitching reinforcement for transport wing panels".
  49. Petry, D. and Fahlbusch, G. (2000), "Dynamic buckling of thin isotropic plates subjected to in-plane impact", Thin-Wall. Struct., 38, 267-283. https://doi.org/10.1016/S0263-8231(00)00037-9
  50. Phoenix, S.L., Yavuz, A.K., Papoulia, K.D. and Hui, C.Y. (2006), "Buckling analysis of delaminated and stitched composite plate system under hygro thermal pressure", J. Eng. Mater. Technol., 128(1), 117-122. https://doi.org/10.1115/1.2128428
  51. Qian, H., Li, H.N., Song, G., Chen, H., Ren, W.J. and Zhang, S. (1994), "Seismic vibration control of civil structures using shape memory alloys: a review", Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, PP. 3377-3395. https://doi.org/10.1061/41096(366)322
  52. Reissner, E. (1944), "On the theory of bending of elastic plates", J. Math. Phys., 23, 184-191. https://doi.org/10.1002/sapm1944231184
  53. Riccio, A., Linde, P., Raimondo, A., Buompane, A. and Sellitto, A. (2017), "On the use of selective stitching in stiffened composite panels to prevent skinstringer debonding", Compos. B. Eng., 124, 64-75. https://doi.org/10.1016/j.compositesb.2017.05.052
  54. Rogers, C.A., Liang, C. and Jia, J. (1991), "Structural modification of simply-supported laminated plates using embedded shape memory alloy fibers", Comput. Struct., 38(5-6), 569-580. https://doi.org/10.1016/00457949(91)90008-A
  55. Saboori, B., Torabi, A.R., Berto, F. and Razavi, S.M.J (2018), "Averaged strain energy density to assess mixed mode I/III fracture of U-notched GPPS samples", Struct. Eng. Mech., Int. J., 65(6), 699-706. https://doi.org/10.12989/sem.2018.65.6.699
  56. Sahmani, A. and Fattahi, A.M. (2018), "Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory.", Appl. Math. Mech., 39, 561580. https://doi.org/10.1007/s10483-018-2321-8
  57. Sankar, B.V. and Sharma, S. (1995), "Effects of stitching on fracture toughness of uniweave textile graphite/epoxy laminates", NASA CONFERENCE PUBLICATION, 481.
  58. Shariyat, M., Moradi, M. and Samaee, S. (2014), "Enhanced model for nonlinear dynamic analysis of rectangular composite plates with embedded SMA wires, considering the instantaneous local phase changes", J. Compos. Struct., 109, 106-118. https://doi.org/10.1016/j.compstruct.2013.10.032
  59. Sekiguchi, Y., Katano, M. and Sato, C. (2017), "Experimental study of the mode I adhesive fracture energy in DCB specimens bonded with a polyurethane adhesive", J. Adhes., 93, 235-255. https://doi.org/10.1080/00218464.2015.1070101
  60. Soltanieh, G., Kabir, M.Z. and Shariyat, M. (2017), "Snap instability of shallow laminated cylindrical shells reinforced with functionally graded shape memory alloy wires", Compos. Struct., 180, 581-595. https://doi.org/10.1016/j.compstruct.2017.08.027
  61. Soltanieh, G., Kabir, M.Z. and Shariyat, M. (2018), "A robust algorithm for behavior and effectiveness investigations of super-elastic SMA wires embedded in composite plates under impulse loading", Compos. Struct., 179, 355-367. https://doi.org/10.1016/j.compstruct.2017.07.065
  62. Soltanieh, G., Kabir, M.Z. and Shariyat, M. (2019), "Improvement of the dynamic instability of shallow hybrid composite cylindrical shells under impulse loads using shape memory alloy wires", Compos. B. Eng., 167, 167-179. https://doi.org/10.1016/j.compositesb.2018.12.040
  63. Talebizadehsardari, P., Eyvazian, A., Azandariani, M.G., Tran, T.N., Rajak, D.K. and Mahani, R.B. (2020), "Buckling analysis of smart beams based on higher order shear deformation theory and numerical method", Steel Compos. Struct., Int. J., 35(5), 635-640. https://doi.org/10.12989/scs.2020.35.5.635
  64. Tawfik, M., Ro, J.-J. and Mei, C. (2002), "Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates", Smart Mater. Struct., 11, 297. https://doi.org/10.1088/0964-1726/11/2/313
  65. Torabi, A.R., Saboori, B. and Kmajoo, M.R. (2020), "Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept", Struct. Eng. Mech., Int. J., 75(5), 559-569. https://doi.org/10.12989/sem.2020.75.5.559
  66. Turvey, G.J. and Sadeghipour, K. (1987), "Compression Buckling of Anisotropic Fiber-reinforced Flat Rectangular Plates with Central Circular Cut-outs", Proceedings of the Sixth International Conference on Composite Materials combined with the Second European Conference on Composite Materials (ICCM & ECCM), 5-47.
  67. Wang, J., Moumni, W., Zhang, W. and Zaki, W. (2017), "A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain", Int. J. Eng. Sci., 117, 51-77. https://doi.org/10.1016/j.ijengsci.2017.05.003
  68. Xu, X., Ma, Y., Lim, C.W. and Chu, H. (1987), "Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system", Int. J. Solids Struct., 43, 3905-3919. https://doi.org/10.1016/j.ijsolstr.2005.03.005
  69. Yasui, Y. and Tsukamura, K. (1987), "Buckling strength of rectangular FRP plate with a hole(In the case of CFRP and GFRP cross-ply laminated plates)", Japan Soc. Mater. Sci. J., 37, 1050-1056. https://doi.org/10.2472/jsms.37.1050
  70. Ye, L. (1988), "Role of matrix resin in delamination onset and growth in composite laminates", Compos. Sci. Technol., 33(4), 257-277. https://doi.org/10.1016/0266-3538(88)90043-7
  71. Zare, R., Najaafi, N., Habibi, M., Ebrahimi, F. and Safarpour, H. (2020), "Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller", Smart Struct. Syst., Int. J., 26(4), 469-480. https://doi.org/10.12989/sss.2020.26.4.469
  72. Zhang, J., Yam, M.C., Soltanieh, G. and Feng, R. (2021), "Collapse resistance of steel frames in two-side column-removal scenario: Analytical method and design approach", Struct. Eng. Mech., Int. J., 78(4), 485-496. https://doi.org/10.12989/sem.2021.78.4.485
  73. Zhao, W. (2011), "Mode I Delamination fracture characterization of polymeric composites under elevated temperature", Syracuse University, NY, USA.
  74. Zhong, Z.W., Chen, R.R., Mei, C. and Pates, C.S. (1994), "Buckling and postbuckling of shape memory alloy fiber-reinforced composite plates", ASME-PUBLICATIONS-PVP, 293, 115.