Acknowledgement
The work is supported by the National Natural Science Foundation of China (Nos. 52027814, 51839009).
References
- Ali, M.M., Narakathu, B.B., Emamian, S., Chlaihawi, A.A., Aljanabi, F., Maddipatla, D., Bazuin, B.J. and Atashbar, M.Z. (2016), "Eutectic Ga-In liquid metal based flexible capacitive pressure sensor", Proceedings of IEEE Sensors Conference, Orlando, FL, USA, October. https://doi.org/10.1109/ICSENS.2016.7808515
- Chuang, C.H., Liou, Y.R. and Shieh, M.Y. (2012), "Flexible tactile sensor array for foot pressure mapping system in a biped robot", Smart Struct. Syst., Int. J., 9(6), 535-547. https://doi.org/10.12989/sss.2012.9.6.535
- Gao, M. and Gui, L. (2014), "A liquid metal based capacitive microsensor", Proceedings of ASME 12th International Conference, Chicago, IL, USA, August. https://doi.org/10.1115/ICNMM2014-21205
- Gao, Y.J., Ota, H., Schaler, E.W., Chen, K., Zhao, A., Gao, W., Fahad, H.M., Leng, Y., Zheng, A., Xiong, F., Zhang, C., Tai, L., Zhao, P., Fearing, R.S. and Javey, A. (2017), "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring", Adv. Mater., 29(39), 1701985. https://doi.org/10.1002/adma.201701985
- Hu, H., Shaikh, K. and Liu, C. (2007), "Super flexible sensor skin using liquid metal as interconnect", Proceedings of IEEE Sensors Conference, Atlanta, GA, USA, October. https://doi.org/10.1109/ICSENS.2007.4388525
- Huang, Y., Fang, D., Wu, C., Wang, W.H., Guo, X.H. and Liu, P. (2016), "A flexible touch-pressure sensor array with wireless transmission system for robotic skin", Rev. Sci. Instrum., 87(6), 065007. https://doi.org/10.1063/1.4954199
- Jung, T. and Yang, S. (2015), "Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel", Sensors, 15(5), 11823-11835. https://doi.org/10.3390/s150511823
- Kawasetsu, T., Horii, T., Ishihara, H. and Asada, M. (2017), "Size dependency in sensor response of a flexible tactile sensor based on inductance measurement", Proceedings of IEEE Sensors Conference, Glasgow, UK, October. https://doi.org/10.1109/ICSENS.2017.8233908
- Kawasetsu, T., Horii, T., Ishihara, H. and Asada, M. (2018), "Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer", IEEE Sensors J., 18(14), 5834-5841. https://doi.org/10.1109/JSEN.2018.2844194
- Li, K., Turcotte, K. and Veres, T. (2019), "Stretchable strain sensors based on thermoplastic elastomer microfluidics embedded with liquid metal", Proceedings of IEEE Sensors Conference, Montreal, Canada, October. https://doi.org/10.1109/SENSORS43011.2019.8956780
- Ota, H. (2018), "Liquid-state environment sensors using liquid metal", ECS Trans., 86(16), 31-38. https://doi.org/10.1149/08616.0031ecst
- Palmer, M.C., O'Rourke, T.D., Olson, N.A., Abdoun, T., Ha, D. and O'Rourke, M.J. (2009), "Tactile pressure sensors for soil-structure interaction assessment", J. Geotech. Geoenviron. Eng., 135(11), 1638-1645. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000143
- Park, Y.L., Majidi, C., Kramer, R., Brard, P. and Wood, R.J. (2010), "Hyperelastic pressure sensing with a liquid-embedded elastomer", J. Micromech. Microeng., 20(12), 125029. https://doi.org/10.1088/0960-1317/20/12/125029
- Qiao, Z.Y. (2021), "Calculation and Simulation of planar spiral inductor based on flexible substrate", Shipboard Electron. Countermeas., 44(1), 116-120. https://doi.org/10.16426/j.cnki.jcdzdk.2021.01.024
- Rudgers, A.J. (1988), "Equivalent-network representations of the generalized Hooke's law for isotropic materials", J. Acoust. Soc. Am., 83(2), 483-486. https://doi.org/10.1121/1.396142
- Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yaghmaie, F. and Gusman, A.M. (2011), "In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing", Smart Struct. Syst., Int. J., 8(5), 471-486. https://doi.org/10.12989/sss.2011.8.5.471
- Shi, X. and Cheng, C.H. (2013), "Artificial hair cell sensors using liquid metal alloy as piezoresistors", Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, April. https://doi.org/10.1109/NEMS.2013.6559886
- Shou, Y.D., Zhou, X.P., Chang, Q.P. and Liu, C. (2021), "An innovative liquid metal-based pressure sensor with its application in geotechnical engineering", Smart Struct. Syst., Int. J., 27(1), 89-99. https://doi.org/10.12989/sss.2021.27.1.089
- Shull, K.R. (2002), "Contact mechanics and the adhesion of soft solids", Mater. Sci. Eng. R., 36(1), 1-45. https://doi.org/10.1016/S0927-796X(01)00039-0
- Springman, S.M., Nater, P., Chikatamarla, R. and Laue, J. (2002), "Use of flexible tactile pressure sensors in geotechnical centrifuges", Proceedings of International Conference Physical Modelling Geotechnics, Netherlands, January. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15076914
- Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook, Third Edition, ASME Press, New York, NY, USA.
- Wang, H.B., Lin, Y.B., Li, W. and Feng, Z.H. (2014), "Design of ultrastable and high resolution eddy-current displacement sensor system", Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, October. https://doi.org/10.1109/IECON.2014.7048828
- Wang, H.B., Kow, J.W., Boer, G.D., Jones, D., Alazmani, A. and Culmer, P. (2017), "A low-cost, high-performance, soft tri-axis tactile sensor based on eddy-current effect", Proceedings of IEEE Sensors Conference, Glasgow, UK, October. https://doi.org/10.1109/ICSENS.2017.8234098
- Wang, H.B., Kow, J.W., Raske, N., de Boer, G, Ghajari, M., Hewson, R. and Alazmani, A. (2018), "Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect", Sens. Actuat. A: Phys., 271, 44-52. https://doi.org/10.1016/j.sna.2017.12.060
- Won, D.J., Baek, S., Kim, H. and Kim, J. (2015), "Arrayed-type touch sensor using micro liquid metal droplets with large dynamic range and high sensitivity", Sens. Actuat. A: Phys., 235, 151-157. https://doi.org/10.1016/j.sna.2015.09.044
- Wong, R.D.P., Posner, J.D. and Santos, V.J. (2012), "Flexible microfluidic normal force sensor skin for tactile feedback", Sens. Actuat. A: Phys., 179, 62-69. https://doi.org/10.1016/j.sna.2012.03.023
- Wu, J.C., Hu, X.L., Sun, M.J. and Hua, S. (2012), "Research Status and Prospect of Strain Monitoring Method of Geotechnical Engineering", Adv. Mater. Res., 594-597, 532-541. https://doi.org/10.4028/www.scientific.net/AMR.594-597.532
- Xu, X.M., Soga, K., Nawaz, S., Moss, N., Bowers, K. and Gajia, M. (2015), "Performance monitoring of timber structures in underground construction using wireless SmartPlank", Smart Struct. Syst., Int. J., 15(3), 769-785. https://doi.org/10.12989/sss.2015.15.3.769
- Yang, X.F., Wang, Y.S. and Qing, X.L. (2018), "A flexible capacitive pressure sensor based on ionic liquid", Sensors, 18(7), 2395. https://doi.org/10.3390/s18072395
- Zeng, J. (2018), "Pressure sensor antenna based on liquid metal material and RF technology", Mater Dissertation; Chongqing University, Chongqing, China.
- Zhang, L.J., Gao, M., Wang, R.H., Deng, Z.S. and Gui, L. (2019), "Stretchable pressure sensor with leakage-free liquid-metal electrodes", Sensors, 19(6), 1316. https://doi.org/10.3390/s19061316
- Zhi, Z., Wang, H.Z. and Ou, J.P. (2006), "A new kind of FBG-based soil-pressure sensor", Proceedings of Optical Fiber Sensors Conference, Cancun, Mexico, October. https://doi.org/10.1364/OFS.2006.ThE90
- Zhou, X.P., Deng, R.S. and Zhu, J.Y. (2018), "Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer", J. Micromech. Microeng., 28(8), 085020. https://doi.org/10.1088/1361-6439/aac13c
- Zhou, X.P., Liu, C. and Zhao, K. (2020), "A novel liquid metal sensor with three microchannels embedded in elastomer", Smart Mater. Struct., 29(4), 1-18. https://doi.org/10.1088/1361-665X/ab7433