DOI QR코드

DOI QR Code

Flexible multimode pressure sensor based on liquid metal

  • Zhou, Xiaoping (School of Civil Engineering, Chongqing University) ;
  • Yu, Zihao (School of Civil Engineering, Chongqing University)
  • Received : 2021.07.06
  • Accepted : 2021.10.15
  • Published : 2021.12.25

Abstract

In this paper, a novel multimode liquid metal-based pressure sensor is developed. The main body of the sensor is composed of polydimethylsiloxane (PDMS) elastomer. The structure of the sensor looks like a sandwich, in which the upper structure contains a cylindrical cavity, and the bottom structure contains a spiral microchannel, and the middle partition layer separates the upper and the bottom structures. Then, the liquid metal is injected into the top cavity and the bottom microchannel. Based on linear elastic fracture mechanics, the deformation of the microchannel cross-section is theoretically analyzed. The changes of resistance, capacitance, and inductance of the microchannel under pressure are deduced, and the corresponding theoretical models are established. The theoretical values of the pressure sensor are in good agreement with experimental data, implying that the developed theoretical model can explain the performance of the sensor well.

Keywords

Acknowledgement

The work is supported by the National Natural Science Foundation of China (Nos. 52027814, 51839009).

References

  1. Ali, M.M., Narakathu, B.B., Emamian, S., Chlaihawi, A.A., Aljanabi, F., Maddipatla, D., Bazuin, B.J. and Atashbar, M.Z. (2016), "Eutectic Ga-In liquid metal based flexible capacitive pressure sensor", Proceedings of IEEE Sensors Conference, Orlando, FL, USA, October. https://doi.org/10.1109/ICSENS.2016.7808515
  2. Chuang, C.H., Liou, Y.R. and Shieh, M.Y. (2012), "Flexible tactile sensor array for foot pressure mapping system in a biped robot", Smart Struct. Syst., Int. J., 9(6), 535-547. https://doi.org/10.12989/sss.2012.9.6.535
  3. Gao, M. and Gui, L. (2014), "A liquid metal based capacitive microsensor", Proceedings of ASME 12th International Conference, Chicago, IL, USA, August. https://doi.org/10.1115/ICNMM2014-21205
  4. Gao, Y.J., Ota, H., Schaler, E.W., Chen, K., Zhao, A., Gao, W., Fahad, H.M., Leng, Y., Zheng, A., Xiong, F., Zhang, C., Tai, L., Zhao, P., Fearing, R.S. and Javey, A. (2017), "Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring", Adv. Mater., 29(39), 1701985. https://doi.org/10.1002/adma.201701985
  5. Hu, H., Shaikh, K. and Liu, C. (2007), "Super flexible sensor skin using liquid metal as interconnect", Proceedings of IEEE Sensors Conference, Atlanta, GA, USA, October. https://doi.org/10.1109/ICSENS.2007.4388525
  6. Huang, Y., Fang, D., Wu, C., Wang, W.H., Guo, X.H. and Liu, P. (2016), "A flexible touch-pressure sensor array with wireless transmission system for robotic skin", Rev. Sci. Instrum., 87(6), 065007. https://doi.org/10.1063/1.4954199
  7. Jung, T. and Yang, S. (2015), "Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel", Sensors, 15(5), 11823-11835. https://doi.org/10.3390/s150511823
  8. Kawasetsu, T., Horii, T., Ishihara, H. and Asada, M. (2017), "Size dependency in sensor response of a flexible tactile sensor based on inductance measurement", Proceedings of IEEE Sensors Conference, Glasgow, UK, October. https://doi.org/10.1109/ICSENS.2017.8233908
  9. Kawasetsu, T., Horii, T., Ishihara, H. and Asada, M. (2018), "Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer", IEEE Sensors J., 18(14), 5834-5841. https://doi.org/10.1109/JSEN.2018.2844194
  10. Li, K., Turcotte, K. and Veres, T. (2019), "Stretchable strain sensors based on thermoplastic elastomer microfluidics embedded with liquid metal", Proceedings of IEEE Sensors Conference, Montreal, Canada, October. https://doi.org/10.1109/SENSORS43011.2019.8956780
  11. Ota, H. (2018), "Liquid-state environment sensors using liquid metal", ECS Trans., 86(16), 31-38. https://doi.org/10.1149/08616.0031ecst
  12. Palmer, M.C., O'Rourke, T.D., Olson, N.A., Abdoun, T., Ha, D. and O'Rourke, M.J. (2009), "Tactile pressure sensors for soil-structure interaction assessment", J. Geotech. Geoenviron. Eng., 135(11), 1638-1645. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000143
  13. Park, Y.L., Majidi, C., Kramer, R., Brard, P. and Wood, R.J. (2010), "Hyperelastic pressure sensing with a liquid-embedded elastomer", J. Micromech. Microeng., 20(12), 125029. https://doi.org/10.1088/0960-1317/20/12/125029
  14. Qiao, Z.Y. (2021), "Calculation and Simulation of planar spiral inductor based on flexible substrate", Shipboard Electron. Countermeas., 44(1), 116-120. https://doi.org/10.16426/j.cnki.jcdzdk.2021.01.024
  15. Rudgers, A.J. (1988), "Equivalent-network representations of the generalized Hooke's law for isotropic materials", J. Acoust. Soc. Am., 83(2), 483-486. https://doi.org/10.1121/1.396142
  16. Ryu, D., Loh, K.J., Ireland, R., Karimzada, M., Yaghmaie, F. and Gusman, A.M. (2011), "In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing", Smart Struct. Syst., Int. J., 8(5), 471-486. https://doi.org/10.12989/sss.2011.8.5.471
  17. Shi, X. and Cheng, C.H. (2013), "Artificial hair cell sensors using liquid metal alloy as piezoresistors", Proceedings of the 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Suzhou, China, April. https://doi.org/10.1109/NEMS.2013.6559886
  18. Shou, Y.D., Zhou, X.P., Chang, Q.P. and Liu, C. (2021), "An innovative liquid metal-based pressure sensor with its application in geotechnical engineering", Smart Struct. Syst., Int. J., 27(1), 89-99. https://doi.org/10.12989/sss.2021.27.1.089
  19. Shull, K.R. (2002), "Contact mechanics and the adhesion of soft solids", Mater. Sci. Eng. R., 36(1), 1-45. https://doi.org/10.1016/S0927-796X(01)00039-0
  20. Springman, S.M., Nater, P., Chikatamarla, R. and Laue, J. (2002), "Use of flexible tactile pressure sensors in geotechnical centrifuges", Proceedings of International Conference Physical Modelling Geotechnics, Netherlands, January. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15076914
  21. Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook, Third Edition, ASME Press, New York, NY, USA.
  22. Wang, H.B., Lin, Y.B., Li, W. and Feng, Z.H. (2014), "Design of ultrastable and high resolution eddy-current displacement sensor system", Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, October. https://doi.org/10.1109/IECON.2014.7048828
  23. Wang, H.B., Kow, J.W., Boer, G.D., Jones, D., Alazmani, A. and Culmer, P. (2017), "A low-cost, high-performance, soft tri-axis tactile sensor based on eddy-current effect", Proceedings of IEEE Sensors Conference, Glasgow, UK, October. https://doi.org/10.1109/ICSENS.2017.8234098
  24. Wang, H.B., Kow, J.W., Raske, N., de Boer, G, Ghajari, M., Hewson, R. and Alazmani, A. (2018), "Robust and high-performance soft inductive tactile sensors based on the Eddy-current effect", Sens. Actuat. A: Phys., 271, 44-52. https://doi.org/10.1016/j.sna.2017.12.060
  25. Won, D.J., Baek, S., Kim, H. and Kim, J. (2015), "Arrayed-type touch sensor using micro liquid metal droplets with large dynamic range and high sensitivity", Sens. Actuat. A: Phys., 235, 151-157. https://doi.org/10.1016/j.sna.2015.09.044
  26. Wong, R.D.P., Posner, J.D. and Santos, V.J. (2012), "Flexible microfluidic normal force sensor skin for tactile feedback", Sens. Actuat. A: Phys., 179, 62-69. https://doi.org/10.1016/j.sna.2012.03.023
  27. Wu, J.C., Hu, X.L., Sun, M.J. and Hua, S. (2012), "Research Status and Prospect of Strain Monitoring Method of Geotechnical Engineering", Adv. Mater. Res., 594-597, 532-541. https://doi.org/10.4028/www.scientific.net/AMR.594-597.532
  28. Xu, X.M., Soga, K., Nawaz, S., Moss, N., Bowers, K. and Gajia, M. (2015), "Performance monitoring of timber structures in underground construction using wireless SmartPlank", Smart Struct. Syst., Int. J., 15(3), 769-785. https://doi.org/10.12989/sss.2015.15.3.769
  29. Yang, X.F., Wang, Y.S. and Qing, X.L. (2018), "A flexible capacitive pressure sensor based on ionic liquid", Sensors, 18(7), 2395. https://doi.org/10.3390/s18072395
  30. Zeng, J. (2018), "Pressure sensor antenna based on liquid metal material and RF technology", Mater Dissertation; Chongqing University, Chongqing, China.
  31. Zhang, L.J., Gao, M., Wang, R.H., Deng, Z.S. and Gui, L. (2019), "Stretchable pressure sensor with leakage-free liquid-metal electrodes", Sensors, 19(6), 1316. https://doi.org/10.3390/s19061316
  32. Zhi, Z., Wang, H.Z. and Ou, J.P. (2006), "A new kind of FBG-based soil-pressure sensor", Proceedings of Optical Fiber Sensors Conference, Cancun, Mexico, October. https://doi.org/10.1364/OFS.2006.ThE90
  33. Zhou, X.P., Deng, R.S. and Zhu, J.Y. (2018), "Three-layer-stacked pressure sensor with a liquid metal-embedded elastomer", J. Micromech. Microeng., 28(8), 085020. https://doi.org/10.1088/1361-6439/aac13c
  34. Zhou, X.P., Liu, C. and Zhao, K. (2020), "A novel liquid metal sensor with three microchannels embedded in elastomer", Smart Mater. Struct., 29(4), 1-18. https://doi.org/10.1088/1361-665X/ab7433