Acknowledgement
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF 2019R1A2B5B01069719). The post-doctoral researcher and graduate students were also supported by the 4th BK21 program of Korean Government.
References
- AASHTO (2007), LRFD bridge design specifications, SI units, Washington, DC: American Association of State Highway and Transportation.
- Abdullah, A.B.M., Rice, J.A. and Hamilton, H.R. (2015), "Wire breakage detection using relative strain variation in unbonded posttensioning anchors", J. Bridge Eng., 20(1), 1-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000639
- Ai, D., Luo, H., Wang, C. and Zhu, H. (2018), "Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers", Eng. Struct., 154, 38-51. https://doi.org/10.1016/j.engstruct.2017.10.046
- Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on pre-stressed concrete structures using electromechanical admittance", Mech. Syst. Signal Process., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046
- Alejano, L.R. and Bobet, A. (2012), Drucker-prager criterion, In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer, pp. 247-252. https://doi.org/10.1007/978-3-319-07713-0 (see https://www.springer.com/gp/book/9783319077123)
- Bastien, J., Marceau, D., Fafard, M. and Ganz, H.R. (2007), "Use of FEA for design of posttensioning anchor head", J. Bridge Eng., 12(2), 194-204. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(194)
- Breen, J.E. (1994), Anchorage zone reinforcement for posttensioned concrete girders, Transportation Research Board. (https://trid.trb.org/view/388973)
- Cervenka, V. and Ganz, H.R. (2014), "Validation of post-tensioning anchorage zones by laboratory testing and numerical simulation", Struct. Concrete, 15(2), 258-268. https://doi.org/10.1002/suco.201300038
- Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029
- Chauthoi620 (2018), Dam I, (Accessed on, May 7, 2018). https://620chauthoi.com/san-pham/dam-i33/
- Dang, N.L., Huynh, T.C. and Kim, J.T. (2019), "Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study", Sensors, 19(5). https://doi.org/10.3390/s19051054
- Dang, N.L., Huynh, T.C., Pham, Q.Q., Lee, S.Y. and Kim, J.T. (2020a), "Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis", Struct. Control Health Monitor., 27, e2547. https://doi.org/10.1002/stc.2547
- Dang, N.L., Pham, Q.Q. and Kim, J.T. (2020b), "Piezoelectric-based hoop-type interface for impedance monitoring of local strand breakage in prestressed multi-strand anchorage", Struct. Control Health Monitor., 28(1). https://doi.org/10.1002/stc.2649
- Darwin, D., Dolan, C.W. and Nilson, A.H. (2016), Design of Concrete Structures, McGraw-Hill Education, New York.
- Dragon, A., Halm, D. and Desoyer, T. (2000), "Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications", Comput. Methods Appl. Mech. Eng., 183(3-4), 331-352. https://doi.org/10.1016/S0045-7825(99)00225-X
- Eringen, A.C., Speziale, C. and Kim, B. (1977), "Crack-tip problem in non-local elasticity", J. Mech. Phys. Solids, 25(5), 339-355. https://doi.org/10.1016/0022-5096(77)90002-3
- Grosse, C.U. (2009), "Acoustic emission localization methods for large structures based on beam forming and array techniques", Proceedings of the NDTCE, 9.
- Guyon, Y. (1974), Limit-State Design of Prestressed Concrete, John Wiley & Sons.
- He, Z.Q. and Liu, Z. (2010), "Optimal three-dimensional strut-and-tie models for anchorage diaphragms in externally prestressed bridges", Eng. Struct., 32(8), 2057-2064. https://doi.org/10.1016/j.engstruct.2010.03.006
- Henault, J.M., Quiertant, M., Delepine-Lesoille, S., Salin, J., Moreau, G., Taillade, F. and Benzarti, K. (2012), "Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system", Constr. Build. Mater., 37, 916-923. https://doi.org/10.1016/j.conbuildmat.2012.05.029
- Hofstetter, B.V.G. (2013), "Review and enhancement of 3D concrete models for large-scale numerical simulations of concrete structures", Int. J. Numer. Anal. Methods Geomech., 37(3), 221-246. https://doi.org/10.1002/nag.1096
- Hou, D.W., Zhao, J.L., Shen, J.S.L. and Chen, J. (2017), "Investigation and improvement of strut-and-tie model for design of end anchorage zone in post-tensioned concrete structure", Constr. Build. Mater., 136, 482-494. https://doi.org/10.1016/j.conbuildmat.2017.01.033
- Huynh, T.C. and Kim, J.T. (2017a), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181
- Huynh, T.C. and Kim, J.T. (2017b), "Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage", Smart Mater. Struct., 26(12), 1-19. https://doi.org/10.1088/1361-665X/aa931b
- Huynh, T.C., Lee, K.S. and Kim, J.T. (2015), "Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation", Smart Struct. Syst., Int. J., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375
- Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Automat. Constr., 105. https://doi.org/10.1016/j.autcon.2019.102844
- Jang, K., Kim, N. and An, Y.K. (2019), "Deep learning-based autonomous concrete crack evaluation through hybrid image scanning", Struct. Health Monitor., 18(5-6), 1722-1737. https://doi.org/10.1177/1475921718821719
- Jang, K., An, Y.K., Kim, B. and Cho, S. (2020), "Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot", Comput.-Aided Civil Infrastruct. Eng., 36(1). https://doi.org/10.1111/mice.12550
- Jefferson, A.D., Mihai, I.C., Tenchev, R., Alnaas, W.F., Cole, G. and Lyons, P. (2016), "A plastic-damage-contact constitutive model for concrete with smoothed evolution functions", Comput. Struct., 169, 40-56. https://doi.org/10.1016/j.compstruc.2016.02.008
- Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118. https://doi.org/10.1016/j.autcon.2020.103291
- Kim, J.T. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", Journal Proceedings.
- Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
- Lee, S. and Kalos, N. (2014), "Non-destructive testing methods in the US for bridge inspection and maintenance", KSCE J. Civil Eng., 18(5), 1322-1331. https://doi.org/10.1007/s12205-014-0633-9
- Liang, C., Sun, F. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
- Lim, Y.Y. and Soh, C.K. (2012), "Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique", J. Intell. Mater. Syst. Struct., 23(7), 815-826. https://doi.org/10.1177/1045389X12437888
- Loutridis, S., Douka, E. and Hadjileontiadis, L.J. (2005), "Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency", NDT & E Int., 38(5), 411-419. https://doi.org/10.1016/j.ndteint.2004.11.004
- Lu, X., Lim, Y.Y. and Soh, C.K. (2017), "A novel electromechanical impedance-based model for strength development monitoring of cementitious materials", Struct. Health Monitor., 17(4), 902-918. https://doi.org/10.1177/1475921717725028
- Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage Theory-application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
- Mehrabi, A.B., Ligozio, C.A., Ciolko, A.T. and Wyatt, S.T. (2010), "Evaluation, rehabilitation planning, and stay-cable replacement design for the hale boggs bridge in Luling, Louisiana", J. Bridge Eng., 15(4), 364-372. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000061
- Min, J., Yun, C.B. and Hong, J.W. (2016), "An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems", Smart Struct. Syst., Int. J., 17(1), 107-122. https://doi.org/10.12989/sss.2016.17.1.107
- Nawy, E.G. (2010), Prestressed Concrete: A Fundamental Approach, Prentice Hall.
- Okumus, P. and Oliva, M.G. (2013), "Evaluation of crack control methods for end zone cracking in prestressed concrete bridge girders", PCI Journal, 58(2). https://doi.org/10.15554/pcij.03012013.91.105
- Ottosen, N.S. (1977), "A failure criterion for concrete", J. Eng. Mech. Div., 103(4), 527-535. https://doi.org/10.1061/JMCEA3.0002248
- Ottosen, N.S. and Ristinmaa, M. (2005), The mechanics of constitutive modeling, Elsevier.
- Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinement-sensitive plasticity constitutive model for concrete in triaxial compression", Int. J. Solids Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022
- Park, J.H., Kim, J.T., Ryu, Y.S. and Lee, J.M. (2007), "Monitoring cracks and prestress-loss in PSC girder bridges using vibration-based damage detection techniques", In: Health Monitoring of Structural and Biological Systems 2007, International Society for Optics and Photonics. https://doi.org/10.1117/12.720907
- Park, H.J., Sohn, H., Yun, C.B., Chung, J. and Lee, M.M.S. (2012), "Wireless guided wave and impedance measurement using laser and piezoelectric transducers", Smart Mater. Struct., 21(3). https://doi.org/10.1088/0964-1726/21/3/035029
- Putcha, C., Dutta, S. and Rodriguez, J. (2020), "Risk priority number for bridge failures", Practice Period. Struct. Des. Constr., 25(2), 04020010. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000480
- Ro, K.M., Kim, M.S. and Lee, Y.H. (2020), "Validity of Anchorage Zone Design for Post-Tensioned Concrete Members with High-Strength Strands", Appl. Sci., 10(9). https://doi.org/10.3390/app10093039
- Roberts, C. (1990), "Behavior and design of the local anchorage zone in post-tensioned concrete", Thesis; The University of Texas, Austin, TX, USA.
- Ryu, J.Y., Huynh, T.C. and Kim, J.T. (2018), "Tension force estimation in axially loaded members using wearable piezoelectric interface technique", Sensors, 19(1), 1-17. https://doi.org/10.3390/s19010047
- Schneider, U. (1976), "Behaviour of concrete under thermal steady state and non-steady state conditions", Fire Materials, 1(3), 103-115. https://doi.org/10.1002/fam.810010305
- Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A. and Calonius, K. (2021), "Anisotropic damage model for concrete and other quasi-brittle materials", Int. J. Solids Struct., 225. https://doi.org/10.1016/j.ijsolstr.2021.111048
- VSL (20180, VSL Strand Post-tensioning systems. Available online (accessed on 12 June 2018): http://www.daorenc.com/kr/wp-content/uploads/2016/05/pt.pdf
- Wu, J., Xian, G. and Li, H. (2018), "A novel anchorage system for CFRP cable: Experimental and numerical investigation", Compos. Struct., 194, 555-563. https://doi.org/10.1016/j.compstruct.2018.04.006
- Xia, Y., Langelaar, M. and Hendriks, M.a.N. (2020), "A critical evaluation of topology optimization results for strut-and-tie modeling of reinforced concrete", Comput.-Aided Civil Infrastruct. Eng., 35(8), 850-869. https://doi.org/10.1111/mice.12537
- Yaghoubi, S.T., Kouhia, R., Hartikainen, J. and Kolari, K. (2014), "A continuum damage model based on ottosen's four parameter failure criterion for concrete", J. Struct. Mech., 47, 50-60.
- Yang, Y., Hu, Y. and Lu, Y. (2008), "Sensitivity of PZT impedance sensors for damage detection of concrete structures", Sensors, 8(1), 327-346. https://doi.org/10.3390/s8010327
- Yao, Y., Tung, S.T.E. and Glisic, B. (2014), "Crack detection and characterization techniques-An overview", Struct. Control Health Monitor., 21(12), 1387-1413. https://doi.org/10.1002/stc.1655
- Zhang, C., Yan, Q., Panda, G.P., Wu, W., Song, G. and Vipulanandan, C. (2020a), "Real-time monitoring stiffness degradation of hardened cement paste under uniaxial compression loading through piezoceramic-based electromechanical impedance method", Constr. Build. Mater., 256. https://doi.org/10.1016/j.conbuildmat.2020.119395
- Zhang, X., Wu, H., Li, J., Pi, A. and Huang, F. (2020b), "A constitutive model of concrete based on Ottosen yield criterion", Int. J. Solids Struct., 193-194, 79-89. https://doi.org/10.1016/j.ijsolstr.2020.02.013
- Zhao, S., Fan, S. and Chen, J. (2019), "Quantitative assessment of the concrete gravity dam damage under earthquake excitation using electro-mechanical impedance measurements", Eng. Struct., 191, 162-178. https://doi.org/10.1016/j.engstruct.2019.04.061