DOI QR코드

DOI QR Code

Piezoelectric skin sensor for electromechanical impedance responses sensitive to concrete damage in prestressed anchorage zone

  • Dang, Ngoc-Loi (Department of Ocean Engineering, Pukyong National University) ;
  • Pham, Quang-Quang (Department of Ocean Engineering, Pukyong National University) ;
  • Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University)
  • 투고 : 2020.11.30
  • 심사 : 2021.09.06
  • 발행 : 2021.12.25

초록

This study presents a numerical investigation on the sensitivity of electromechanical (EM) impedance responses to inner damaged concrete of a prestressed anchorage zone. Firstly, the Ottosen yield criterion is selected to simulate the plasticity behavior of the concrete anchorage zone under the compressive loading. Secondly, several overloading cases are selected to analyze inner damage formations in the concrete of the anchorage zone. Using a finite element (FE) model of the anchorage zone, the relationship between applied forces and stresses is analyzed to illustrate inner plasticity regions in concrete induced by the overloading. Thirdly, EM impedance responses of surface-mounted PZT (lead-zirconate-titanate) sensors are numerically acquired before and after concrete damage occurrence in the anchorage zone. The variation of impedance responses is estimated using the RMSD (root-mean-square-deviation) damage metric to quantify the sensitivity of the signals to inner damaged concrete. Lastly, a novel PZT skin, which can measure impedance signatures in predetermined frequency ranges, is designed for the anchorage zone to sensitively monitor the EM impedance signals of the inner damaged concrete. The feasibility of the proposed method is numerically evaluated for a series of damage cases of the anchorage zone. The results reveal that the proposed impedance-based method is promising for monitoring inner damaged concrete in anchorage zones.

키워드

과제정보

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF 2019R1A2B5B01069719). The post-doctoral researcher and graduate students were also supported by the 4th BK21 program of Korean Government.

참고문헌

  1. AASHTO (2007), LRFD bridge design specifications, SI units, Washington, DC: American Association of State Highway and Transportation.
  2. Abdullah, A.B.M., Rice, J.A. and Hamilton, H.R. (2015), "Wire breakage detection using relative strain variation in unbonded posttensioning anchors", J. Bridge Eng., 20(1), 1-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000639
  3. Ai, D., Luo, H., Wang, C. and Zhu, H. (2018), "Monitoring of the load-induced RC beam structural tension/compression stress and damage using piezoelectric transducers", Eng. Struct., 154, 38-51. https://doi.org/10.1016/j.engstruct.2017.10.046
  4. Ai, D., Luo, H. and Zhu, H. (2019), "Numerical and experimental investigation of flexural performance on pre-stressed concrete structures using electromechanical admittance", Mech. Syst. Signal Process., 128, 244-265. https://doi.org/10.1016/j.ymssp.2019.03.046
  5. Alejano, L.R. and Bobet, A. (2012), Drucker-prager criterion, In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer, pp. 247-252. https://doi.org/10.1007/978-3-319-07713-0 (see https://www.springer.com/gp/book/9783319077123)
  6. Bastien, J., Marceau, D., Fafard, M. and Ganz, H.R. (2007), "Use of FEA for design of posttensioning anchor head", J. Bridge Eng., 12(2), 194-204. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:2(194)
  7. Breen, J.E. (1994), Anchorage zone reinforcement for posttensioned concrete girders, Transportation Research Board. (https://trid.trb.org/view/388973)
  8. Cervenka, V. and Ganz, H.R. (2014), "Validation of post-tensioning anchorage zones by laboratory testing and numerical simulation", Struct. Concrete, 15(2), 258-268. https://doi.org/10.1002/suco.201300038
  9. Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36(10), 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029
  10. Chauthoi620 (2018), Dam I, (Accessed on, May 7, 2018). https://620chauthoi.com/san-pham/dam-i33/
  11. Dang, N.L., Huynh, T.C. and Kim, J.T. (2019), "Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method-feasibility study", Sensors, 19(5). https://doi.org/10.3390/s19051054
  12. Dang, N.L., Huynh, T.C., Pham, Q.Q., Lee, S.Y. and Kim, J.T. (2020a), "Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis", Struct. Control Health Monitor., 27, e2547. https://doi.org/10.1002/stc.2547
  13. Dang, N.L., Pham, Q.Q. and Kim, J.T. (2020b), "Piezoelectric-based hoop-type interface for impedance monitoring of local strand breakage in prestressed multi-strand anchorage", Struct. Control Health Monitor., 28(1). https://doi.org/10.1002/stc.2649
  14. Darwin, D., Dolan, C.W. and Nilson, A.H. (2016), Design of Concrete Structures, McGraw-Hill Education, New York.
  15. Dragon, A., Halm, D. and Desoyer, T. (2000), "Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications", Comput. Methods Appl. Mech. Eng., 183(3-4), 331-352. https://doi.org/10.1016/S0045-7825(99)00225-X
  16. Eringen, A.C., Speziale, C. and Kim, B. (1977), "Crack-tip problem in non-local elasticity", J. Mech. Phys. Solids, 25(5), 339-355. https://doi.org/10.1016/0022-5096(77)90002-3
  17. Grosse, C.U. (2009), "Acoustic emission localization methods for large structures based on beam forming and array techniques", Proceedings of the NDTCE, 9.
  18. Guyon, Y. (1974), Limit-State Design of Prestressed Concrete, John Wiley & Sons.
  19. He, Z.Q. and Liu, Z. (2010), "Optimal three-dimensional strut-and-tie models for anchorage diaphragms in externally prestressed bridges", Eng. Struct., 32(8), 2057-2064. https://doi.org/10.1016/j.engstruct.2010.03.006
  20. Henault, J.M., Quiertant, M., Delepine-Lesoille, S., Salin, J., Moreau, G., Taillade, F. and Benzarti, K. (2012), "Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system", Constr. Build. Mater., 37, 916-923. https://doi.org/10.1016/j.conbuildmat.2012.05.029
  21. Hofstetter, B.V.G. (2013), "Review and enhancement of 3D concrete models for large-scale numerical simulations of concrete structures", Int. J. Numer. Anal. Methods Geomech., 37(3), 221-246. https://doi.org/10.1002/nag.1096
  22. Hou, D.W., Zhao, J.L., Shen, J.S.L. and Chen, J. (2017), "Investigation and improvement of strut-and-tie model for design of end anchorage zone in post-tensioned concrete structure", Constr. Build. Mater., 136, 482-494. https://doi.org/10.1016/j.conbuildmat.2017.01.033
  23. Huynh, T.C. and Kim, J.T. (2017a), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.12989/sss.2017.20.2.181
  24. Huynh, T.C. and Kim, J.T. (2017b), "Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage", Smart Mater. Struct., 26(12), 1-19. https://doi.org/10.1088/1361-665X/aa931b
  25. Huynh, T.C., Lee, K.S. and Kim, J.T. (2015), "Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation", Smart Struct. Syst., Int. J., 15(2), 375-393. https://doi.org/10.12989/sss.2015.15.2.375
  26. Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Automat. Constr., 105. https://doi.org/10.1016/j.autcon.2019.102844
  27. Jang, K., Kim, N. and An, Y.K. (2019), "Deep learning-based autonomous concrete crack evaluation through hybrid image scanning", Struct. Health Monitor., 18(5-6), 1722-1737. https://doi.org/10.1177/1475921718821719
  28. Jang, K., An, Y.K., Kim, B. and Cho, S. (2020), "Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot", Comput.-Aided Civil Infrastruct. Eng., 36(1). https://doi.org/10.1111/mice.12550
  29. Jefferson, A.D., Mihai, I.C., Tenchev, R., Alnaas, W.F., Cole, G. and Lyons, P. (2016), "A plastic-damage-contact constitutive model for concrete with smoothed evolution functions", Comput. Struct., 169, 40-56. https://doi.org/10.1016/j.compstruc.2016.02.008
  30. Kang, D., Benipal, S.S., Gopal, D.L. and Cha, Y.J. (2020), "Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning", Automat. Constr., 118. https://doi.org/10.1016/j.autcon.2020.103291
  31. Kim, J.T. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132
  32. Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
  33. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", Journal Proceedings.
  34. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  35. Lee, S. and Kalos, N. (2014), "Non-destructive testing methods in the US for bridge inspection and maintenance", KSCE J. Civil Eng., 18(5), 1322-1331. https://doi.org/10.1007/s12205-014-0633-9
  36. Liang, C., Sun, F. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
  37. Lim, Y.Y. and Soh, C.K. (2012), "Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique", J. Intell. Mater. Syst. Struct., 23(7), 815-826. https://doi.org/10.1177/1045389X12437888
  38. Loutridis, S., Douka, E. and Hadjileontiadis, L.J. (2005), "Forced vibration behaviour and crack detection of cracked beams using instantaneous frequency", NDT & E Int., 38(5), 411-419. https://doi.org/10.1016/j.ndteint.2004.11.004
  39. Lu, X., Lim, Y.Y. and Soh, C.K. (2017), "A novel electromechanical impedance-based model for strength development monitoring of cementitious materials", Struct. Health Monitor., 17(4), 902-918. https://doi.org/10.1177/1475921717725028
  40. Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage Theory-application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  41. Mehrabi, A.B., Ligozio, C.A., Ciolko, A.T. and Wyatt, S.T. (2010), "Evaluation, rehabilitation planning, and stay-cable replacement design for the hale boggs bridge in Luling, Louisiana", J. Bridge Eng., 15(4), 364-372. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000061
  42. Min, J., Yun, C.B. and Hong, J.W. (2016), "An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems", Smart Struct. Syst., Int. J., 17(1), 107-122. https://doi.org/10.12989/sss.2016.17.1.107
  43. Nawy, E.G. (2010), Prestressed Concrete: A Fundamental Approach, Prentice Hall.
  44. Okumus, P. and Oliva, M.G. (2013), "Evaluation of crack control methods for end zone cracking in prestressed concrete bridge girders", PCI Journal, 58(2). https://doi.org/10.15554/pcij.03012013.91.105
  45. Ottosen, N.S. (1977), "A failure criterion for concrete", J. Eng. Mech. Div., 103(4), 527-535. https://doi.org/10.1061/JMCEA3.0002248
  46. Ottosen, N.S. and Ristinmaa, M. (2005), The mechanics of constitutive modeling, Elsevier.
  47. Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinement-sensitive plasticity constitutive model for concrete in triaxial compression", Int. J. Solids Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022
  48. Park, J.H., Kim, J.T., Ryu, Y.S. and Lee, J.M. (2007), "Monitoring cracks and prestress-loss in PSC girder bridges using vibration-based damage detection techniques", In: Health Monitoring of Structural and Biological Systems 2007, International Society for Optics and Photonics. https://doi.org/10.1117/12.720907
  49. Park, H.J., Sohn, H., Yun, C.B., Chung, J. and Lee, M.M.S. (2012), "Wireless guided wave and impedance measurement using laser and piezoelectric transducers", Smart Mater. Struct., 21(3). https://doi.org/10.1088/0964-1726/21/3/035029
  50. Putcha, C., Dutta, S. and Rodriguez, J. (2020), "Risk priority number for bridge failures", Practice Period. Struct. Des. Constr., 25(2), 04020010. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000480
  51. Ro, K.M., Kim, M.S. and Lee, Y.H. (2020), "Validity of Anchorage Zone Design for Post-Tensioned Concrete Members with High-Strength Strands", Appl. Sci., 10(9). https://doi.org/10.3390/app10093039
  52. Roberts, C. (1990), "Behavior and design of the local anchorage zone in post-tensioned concrete", Thesis; The University of Texas, Austin, TX, USA.
  53. Ryu, J.Y., Huynh, T.C. and Kim, J.T. (2018), "Tension force estimation in axially loaded members using wearable piezoelectric interface technique", Sensors, 19(1), 1-17. https://doi.org/10.3390/s19010047
  54. Schneider, U. (1976), "Behaviour of concrete under thermal steady state and non-steady state conditions", Fire Materials, 1(3), 103-115. https://doi.org/10.1002/fam.810010305
  55. Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A. and Calonius, K. (2021), "Anisotropic damage model for concrete and other quasi-brittle materials", Int. J. Solids Struct., 225. https://doi.org/10.1016/j.ijsolstr.2021.111048
  56. VSL (20180, VSL Strand Post-tensioning systems. Available online (accessed on 12 June 2018): http://www.daorenc.com/kr/wp-content/uploads/2016/05/pt.pdf
  57. Wu, J., Xian, G. and Li, H. (2018), "A novel anchorage system for CFRP cable: Experimental and numerical investigation", Compos. Struct., 194, 555-563. https://doi.org/10.1016/j.compstruct.2018.04.006
  58. Xia, Y., Langelaar, M. and Hendriks, M.a.N. (2020), "A critical evaluation of topology optimization results for strut-and-tie modeling of reinforced concrete", Comput.-Aided Civil Infrastruct. Eng., 35(8), 850-869. https://doi.org/10.1111/mice.12537
  59. Yaghoubi, S.T., Kouhia, R., Hartikainen, J. and Kolari, K. (2014), "A continuum damage model based on ottosen's four parameter failure criterion for concrete", J. Struct. Mech., 47, 50-60.
  60. Yang, Y., Hu, Y. and Lu, Y. (2008), "Sensitivity of PZT impedance sensors for damage detection of concrete structures", Sensors, 8(1), 327-346. https://doi.org/10.3390/s8010327
  61. Yao, Y., Tung, S.T.E. and Glisic, B. (2014), "Crack detection and characterization techniques-An overview", Struct. Control Health Monitor., 21(12), 1387-1413. https://doi.org/10.1002/stc.1655
  62. Zhang, C., Yan, Q., Panda, G.P., Wu, W., Song, G. and Vipulanandan, C. (2020a), "Real-time monitoring stiffness degradation of hardened cement paste under uniaxial compression loading through piezoceramic-based electromechanical impedance method", Constr. Build. Mater., 256. https://doi.org/10.1016/j.conbuildmat.2020.119395
  63. Zhang, X., Wu, H., Li, J., Pi, A. and Huang, F. (2020b), "A constitutive model of concrete based on Ottosen yield criterion", Int. J. Solids Struct., 193-194, 79-89. https://doi.org/10.1016/j.ijsolstr.2020.02.013
  64. Zhao, S., Fan, S. and Chen, J. (2019), "Quantitative assessment of the concrete gravity dam damage under earthquake excitation using electro-mechanical impedance measurements", Eng. Struct., 191, 162-178. https://doi.org/10.1016/j.engstruct.2019.04.061