Acknowledgement
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups under grant number RGP.1/154/42.
References
- Abbas, S.Z., Khan, M.I., Kadry, S., Khan, W.A., Israr-Ur-Rehman, M. and Waqas, M. (2020), "Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy", Comput. Methods Programs Biomed., 190, 105362. https://doi.org/10.1016/j.cmpb.2020.105362
- Ahmed, Z., Nadeem, S., Saleem, S. and Ellahi, R. (2019), "Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface", Int. J. Numer. Methods Heat & Fluid Flow. https://doi.org/10.1108/HFF-04-2019-0346
- Al-Hossainy, A.F., Eid, M.R. and Zoromba, M.S. (2019), "SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium", Physica Scripta, 94(10), 105208. https://doi.org/10.1088/1402-4896/ab2413
- AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., Int. J., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111
- Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
- Bestman, A.V. (1990), "Natural convection boundary layer with suction and mass transfer in a porous medium", Int. J. Energy Res., 14(4), 389-396. https://doi.org/10.1002/er.4440140403
- Bhatti, M.M. and Michaelides, E.E. (2020), "Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate", J. Thermal Anal. Calorimetry, 1-10. https://doi.org/10.1007/s10973-020-09492-3
- Bhatti, M.M., Mishra, S.R., Abbas, T. and Rashidi, M.M. (2018), "A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects", Neural Comput. Applicat., 30(4), 1237-1249. https://doi.org/10.1007/s00521-016-2768-8
- Buongiorno, J. (2006), "Convective transport in nanofluids", J. Heat Transfer, 128(3), 240-250. https://doi.org/10.1115/1.2150834
- Casson, N.A. (1959), "Flow equation for pigment oil suspensions of the printing ink type", In: Rheology of Dispersed System, Peragamon Press. https://doi.org/10.1002/9781444391060
- Choi, S.U. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles", (No. ANL/MSD/CP84938; CONF-951135-29), Argonne National Lab., IL, USA.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216
- Daniel, Y.S., Aziz, Z.A., Ismail, Z. and Salah, F. (2017), "Effects of thermal radiation, viscous and Joule heating on electrical MHD nanofluid with double stratification", Chinese J. Phys., 55(3), 630-651. https://doi.org/10.1016/j.cjph.2017.04.001
- Eldabe, N.T.M. and Salwa, M.G.E. (1995), "Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders", J. Phys., 64, 41-64. https://doi.org/10.1016/j.jphys.2017.11.011
- Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J. (2001), "Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles", Appl. Phys. Lett., 78(6), 718-720. https://doi.org/10.1063/1.1341218
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M., & Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., Int. J., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037
- Gbadeyan, J.A., Titiloye, E.O. and Adeosun, A.T. (2020), "Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip", Heliyon, 6(1), e03076. https://doi.org/10.1016/j.heliyon.2019.e03076
- Ghadikolaei, S.S., Hosseinzadeh, K., Ganji, D.D. and Jafari, B. (2018), "Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet", Case Studies Thermal Eng., 12, 176-187. https://doi.org/10.1016/j.csite.2018.04.009
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., Int. J., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253
- Hadji, L. and Safa, A. (2020), "Bending analysis of softcore and hardcore functionally graded sandwich beams", Earthq. Struct., Int. J., 18(4), 481-492. https://doi.org/10.12989/eas.2020.18.4.481
- Haq, R.U., Nadeem, S., Khan, Z.H. and Okedayo, T.G. (2014), "Convective heat transfer and MHD effects on Casson nanofluid flow over a shrinking sheet", Central Eur. J. Phys., 12(12), 862-871. https://doi.org/10.2478/s11534-014-0522-3
- Hayat, T., Kanwal, M., Qayyum, S. and Alsaedi, A. (2020), "Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation", Physica A: Statist. Mech. Applicat., 544, 123437. https://doi.org/10.1016/j.physa.2019.123437
- Hillesdon, A.J. and Pedley, T.J. (1996), "Bioconvection in suspensions of oxytactic bacteria: linear theory", J. Fluid Mech., 324, 223-259. https://doi.org/10.1017/S0022112096007902
- Hillesdon, A.J., Pedley, T.J. and Kessler, J.O. (1995), "The development of concentration gradients in a suspension of chemotactic bacteria", Bull. Math. Biol., 57, 299-344. https://doi.org/10.1007/BF02460620
- Ibrahim, W. and Negera, M. (2020), "MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction", J. Egypt. Mathe. Soc., 28(1), 1-28. https://doi.org/10.1186/s42787-019-0057-2
- Irfan, M., Khan, W.A., Khan, M. and Gulzar, M.M. (2019), "Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection", J. Phys. Chem. Solids, 125, 141-152. https://doi.org/10.1016/j.jpcs.2018.10.016
- Jawad, M., Shah, Z., Islam, S., Bonyah, E. and Khan, A.Z. (2018), "Darcy-Forchheimer flow of MHD nanofluid thin film flow with Joule dissipation and Navier's partial slip", J. Phys. Commun., 2(11), 115014. https://doi.org/10.1088/2399-6528/aaeddf
- Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transfer, 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
- Khan, M.I., Hayat, T., Waqas, M., Alsaedi, A. and Khan, M.I. (2019a), "Effectiveness of radiative heat flux in MHD flow of Jeffrey-nanofluid subject to Brownian and thermophoresis diffusions", J. Hydrodyn., 31(2), 421-427. https://doi.org/10.1007/s42241-019-0003-7
- Khan, W.A., Rashad, A.M., Abdou, M.M.M. and Tlili, I. (2019b), "Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone", Eur. J. Mech. - B/Fluids, 75, 133-142. https://doi.org/10.1016/j.euromechflu.2019.01.002
- Khan, N.S., Shah, Q., Bhaumik, A., Kumam, P., Thounthong, P. and Amiri, I. (2020), "Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks", Scientific Reports, 10(1), 1-26. https://doi.org/10.1038/s41598-020-61172-2
- Kumam, P., Shah, Z., Dawar, A., Rasheed, H.U. and Islam, S. (2019), "Entropy generation in MHD radiative flow of CNTs Casson nanofluid in rotating channels with heat source/sink", Mathe. Problems Eng. https://doi.org/10.1155/2019/9158093
- Kuznetsov, A.V. (2010), "The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms, Int. Commun. Heat Mass Transfer, 37, 1421-1425. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.015
- Kuznetsov, A.V. (2011a), "Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth", Eur. J. Mech. - B/Fluids, 30, 156-165. https://doi.org/10.1016/j.euromechflu.2010.10.007
- Kuznetsov, A.V. (2011b), "Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability", Nanoscale Res. Lett., 6, 100. https://doi.org/10.1186/1556-276X-6-100
- Le Thanh, C., Nguyen, T.N., Vu, T.H., Khatir, S. and Wahab, M.A. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0
- Lee, S., Choi, S.U.S., Li, S. and Eastman, J.A. (1999), "Measuring thermal conductivity of fluids containing oxide nanoparticles", J. Heat Tranfer, 121(2), 280e289. https://doi.org/10.1115/1.2825978
- Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., Int. J., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525
- Ma, Y., Mohebbi, R., Rashidi, M.M., Yang, Z. and Sheremet, M.A. (2019), "Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure", Int. J. Heat Mass Transfer, 130, 123-134. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.072
- Maleque, K. (2013), "Effects of binary chemical reaction and activation energy on MHD boundary layer heat and mass transfer flow with viscous dissipation and heat generation/absorption", ISRN Thermodyn. https://doi.org/10.1155/2013/284637
- Mishra, A. and Kumar, M. (2020), "Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating", SN Appl. Sci., 2(8), 1-13. https://doi.org/10.1007/s42452-020-3156-7
- Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2017), "Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy", Int. J. Heat Mass Transfer, 108, 1340-1346. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.029
- Nayak, M.K., Prakash, J., Tripathi, D., Pandey, V.S., Shaw, S. and Makinde, O.D. (2020), "3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic micro-organisms", Heat Transfer-Asian Res., 49(1), 135-153. https://doi.org/10.1002/htj.21603
- Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., Int. J., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027
- Ramzan, M., Bilal, M., Chung, J.D. and Farooq, U. (2016), "Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface-An optimal solution", Results Phys., 6, 1072-1079. https://doi.org/10.1016/j.rinp.2016.11.036
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
- Shah, Z., Dawar, A., Kumam, P., Khan, W. and Islam, S. (2019), "Impact of nonlinear thermal radiation on MHD nanofluid thin film flow over a horizontally rotating disk", Appl. Sci., 9(8), 1533. https://doi.org/10.3390/app9081533
- Sheikholeslami, M., Abelman, S. and Ganji, D.D. (2014), "Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation", Int. J. Heat Mass Transfer, 79, 212-222. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.004
- Souayeh, B., Reddy, M.G., Sreenivasulu, P., Poornima, T., Rahimi-Gorji, M. and Alarifi, I.M. (2019), "Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle", J. Molecular Liquids, 284, 163-174. https://doi.org/10.1016/j.molliq.2019.03.151
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
- Tlili, I., Ramzan, M., Kadry, S., Kim, H.W. and Nam, Y. (2020), "Radiative mhd nanofluid flow over a moving thin needle with entropy generation in a porous medium with dust particles and hall current", Entropy, 22(3), 354. https://doi.org/10.3390/e22030354
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
- Wang, C.Y. (1889), "Free convection on a vertical stretching surface", J. Appl. Math. Mech. (ZAMM), 69, 418-420. https://doi.org/10.1002/zamm.19890691115
- Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
- Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391
- Zuhra, S., Khan, N.S., Shah, Z., Islam, S. and Bonyah, E. (2018), "Simulation of bioconvection in the suspension of second grade nanofluid containing nanoparticles and gyrotactic microorganisms", AIP Adv., 8(10), 105210. https://doi.org/10.1063/1.5054679