과제정보
This work is supported by the NSFC (No. U1909217), the ZJNSF (No. LD21E050001), the Zhejiang Zhejiang Special Support Program for High-level Personnel Recruitment of China (No. 2018R52034) and the Wenzhou Major Science and Technology Innovation Project of China (No. ZG2020051).
참고문헌
- Ada, M., Sevim, B., Yuzer, N. and Ayvaz, Y. (2018), "Assessment of damages on a RC building after a big fire", Adv. Concr. Constr., Int. J., 6(2), 177-197. https://doi.org/10.12989/acc.2018.6.2.177
- Beura, S., Majhi, B. and Dash, R. (2015), "Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer", Neurocomputing, 154, 1-14. https://doi.org/10.1016/j.neucom.2014.12.032
- Canny, J. (1987), "A computational approach to edge detection", IEEE. T Pattern. Anal., 8, 679-698. 10.1109/TPAMI.1986.4767851
- Celik, O., Terrell, T., Gul, M. and Catbas, F.N. (2018), "Sensor clustering technique for practical structural monitoring and maintenance", Struct. Monit. Maint., Int. J., 5(2), 273-295. https://doi.org/10.12989/smm.2018.5.2.273
- Chen, S.C. and Chiu, C.C. (2019), "Texture construction edge detection algorithm", Appl. Sci-Basel, 9(5), 897. https://doi.org/10.3390/app9050897
- Do, N.T., Mei, Q. and Gul, M. (2019), "Damage assessment of shear-type structures under varying mass effects", Struct. Monit. Maint., Int. J., 6(3), 237-254. https://doi.org/10.12989/smm.2019.6.3.237
- Figueira, D., Sousa, C. and Serra Neves, A. (2018), "Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks", Comput. Concrete, Int. J., 21(5), 593-605. https://doi.org/10.12989/cac.2018.21.5.593
- Franca, A.S. and Vassallo, R.F. (2020), "A method of classifying railway sleepers and surface defects in real environment", IEEE Sens. J., 21(10), 11301-11309. https://doi.org/10.1109/JSEN.2020.3026173
- Friedl, M.A. and Brodley, C.E. (1997), "Decision tree classification of land cover from remotely sensed data", Remote Sens. Environ., 61, 399-409. https://doi.org/10.1016/S0034-4257(97)00049-7
- Gao, W., Zhang, X., Yang, L. and Liu, H. (2010), "An improved sobel edge detection", Proceedings of the 3rd International Conference on Computer Science and Information, Technology, 5, 67-71. https://doi.org/10.1109/ICCSIT.2010.5563693
- Gao, Y., Liu, X.Y. and Xiang, J.W. (2020), "FEM simulation-based generative adversarial networks to detect bearing faults", IEEE T. Ind. Inform., 16(7), 4961-4971. https://doi.org/10.1109/TII.2020.2968370
- Gao, Y., Liu, X.Y., Huang, H.Z. and Xiang, J.W. (2021), "A hybrid of finite element simulation and generative adversarial networks to classify faults in rotor-bearing systems", ISA Transact., 108, 356-366. https://doi.org/10.1016/j.isatra.2020.08.012
- Goel, N., Kaur, H. and Saxena, J. (2020), "Modified decision based unsymmetric adaptive neighborhood trimmed mean filter for removal of very high density salt and pepper noise", Multimed.Tools Appl., 79(27), 19739-19768. https://doi.org/10.1007/s11042-020-08687-y
- Gonzalez, R.C., Woods, R.E. and Eddins, S.L. (2004), Digital Image Processing Using Matlab, Gatesmark Publishing, New York, USA.
- Haeri, H., Sarfarazi, V., Zhu, Z. and Moradizadeh, M. (2018), "The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test", Comput. Concrete, Int. J., 22(4), 373-381. https://doi.org/10.12989/cac.2018.22.4.373
- Han, D., Liu, Q. and Fan, W. (2018), "A new image classification method using CNN transfer learning and web data augmentation", Expert. Syst. Appl., 95, 43-56. https://doi.org/10.1016/j.eswa.2017.11.028
- Hsu, C., Lu, C. and Pei, S. (2012), "Image feature extraction in encrypted domain with privacy-preserving SIFT", IEEE T. Image Process., 21, 4593-4607. https://doi.org/10.1109/TIP.2012.2204272
- Isik, E., Aydin, M.C. and Buyuksarac, A. (2020), "24 January 2020 Sivrice (Elazig) earthquake damages and determination of earthquake parameters in the region", Earthq. Struct., Int. J., 19(2), 145-156. https://doi.org/10.12989/eas.2020.19.2.145
- Janeliukstis, R., Rucevskis, S. and Kaewunruen, S. (2019a), "Mode shape curvature squares method for crack detection in railway prestressed concrete sleepers", Eng. Fail. Anal., 105, 386-401. https://doi.org/10.1016/j.engfailanal.2019.07.020
- Janeliukstisa, R., Clarkb, A., Papaeliasc, M. and Kaewunruen, S. (2019b), "Flexural cracking-induced acoustic emission peak frequency shift in railway prestressed concrete sleepers", Eng. Struct, 178, 493-505. https://doi.org/10.1016/j.engstruct.2018.10.058
- Jiang, Z. and Xiang, J. (2020), "Method using XFEM and SVR to predict the fatigue life of plate-like structures", Struct. Eng. Mech., Int. J., 73(4), 455-462. https://doi.org/10.12989/sem.2020.73.4.455
- Kingma, D.P. and Ba, J. (2014), "Adam: A method for stochastic optimization", arXiv preprint arXiv:1412.6980.
- Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012), "ImageNet classification with deep convolutional neural networks", Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA.
- Leaman, F., Herz, A., Brinnel, V., Baltes, R. and Clausen, E. (2020), "Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum", Struct. Monit. Maint., Int. J., 7(1), 13-25. https://doi.org/10.12989/smm.2020.7.1.013
- Lecun, Y. and Bengio, Y. (1995), "Convolutional networks for images, speech, and time series", (Arbib, M.A. Eds.), In: The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, USA.
- Liu, H., Ding, Y.L., Zhao, H.W., Wang, M.Y. and Geng, F.F. (2020), "Deep learning-based recovery method for missing structural temperature data using LSTM network", Struct. Monit. Maint., Int. J., 7(2), 109-124. https://doi.org/10.12989/smm.2020.7.2.109
- Mizuno, K., Terachi, Y., Takagi, K., Izumi, S., Kawaguchi, H. and Yoshimoto, M. (2012), "Architectural study of HOG feature extraction processor for real-time object detection", 2012 IEEE Workshop on Signal Processing Systems, Quebec City, QC, Canada, October, pp. 197-202. https://doi.org/10.1109/SiPS.2012.57
- Perez, L. and Wang, J. (2017), "The effectiveness of data augmentation in image classification using deep learning", arXiv preprint arXiv:1712.04621.
- Prasath, V.S., Thanh, D.N.H. and Hung, N.Q. (2020), "Multiscale gradient maps augmented Fisher information-based image edge detection", IEEE Access, 8, 141104-141110. https://doi.org/10.1109/ACCESS.2020.3013888
- Seif, A., Salut, M.M. and Marsono, M.N. (2010), "A hardware architecture of prewitt edge detection", Proceedings of 2010 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology, Kuala Lumpur, Malaysia, November, pp. 99-101.
- Sengsri, P., Ngamkhanong, C., Melo, A.L.O.D., Papaelias, M. and Kaewunruen, S. (2020), "Damage detection in fiber-reinforced foamed urethane composite railway bearers using acoustic emissions", Infrastruct., 5(6), 50. https://doi.org/10.3390/infrastructures5060050
- Shemirani, A.B., Sarfarazi, V., Haeri, H. and Marji, M.F. (2018), "A discrete element simulation of a punch-through shear test to investigate the confining pressure effects on the shear behaviour of concrete cracks", Comput. Concrete, Int. J., 21(2), 189-197. https://doi.org/10.12989/cac.2018.21.2.189
- Shih, F.Y. (2010), Image processing and mathematical morphology, Archives of Dermatology.
- Shorten, C. and Khoshgoftaar, T.M. (2019), "A survey on image data augmentation for deep learning", J. Big Data, 6(1), 1-48. https://doi.org/10.1186/s40537-019-0197-0
- Siddhartha, S., Yu, C., Qing, H., Reza, M. and Zhiguo, L. (2018), "Data-driven optimization of railway maintenance for track geometry", Transp. Res. Part C: Emerg. Technol, 90, 34-58. https://doi.org/10.1016/j.trc.2018.02.019
- Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv preprint arXiv:1409.1556.
- Song, W., Xiang, J. and Zhong, Y. (2017), "Mechanical parameters detection in stepped shafts using the FEM based IET", Smart Struct. Syst., Int. J., 20(4), 473-481. https://doi.org/10.12989/sss.2017.20.4.473
- Suykens, J.A.K. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neural Process. Lett., 9, 293-300. https://doi.org/10.1023/A:1018628609742
- Sysyn, M., Nabochenko, O., Kovalchuk, V., Gruen, D. and Pentsak, A. (2019), "Improvement of inspection system for common crossings by track side monitoring and prognostics", Struct. Monit. Maint., Int. J., 6(3), 219-235. https://doi.org/10.12989/smm.2019.6.3.219
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2014), "Going deeper with convolutions", Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, pp. 1-9.
- Torre, V. and Poggio, T.A. (1986), "On edge detection", IEEE T. Pattern. Anal., 8, 147-163. https://doi.org/10.1109/TPAMI.1986.4767769
- Viswanath, K., Mukherjee, J. and Biswas, P.K. (2011), "Image filtering in the block DCT domain using symmetric convolution", J. Vis. Commun. Image R., 22, 141-152. https://doi.org/10.1016/j.jvcir.2010.11.005
- Wang, S. and Xiang, J. (2019), "A minimum entropy deconvolution-enhanced convolutional neural networks for fault diagnosis of axial piston pumps", Soft Comput., 24, 1-15. https://doi.org/10.1007/s00500-019-04076-2
- Yella, S., Dougherty, M. and Gupta, N.K. (2009), "Condition monitoring of wooden railway sleepers", Transp. Res. Part C: Emerg. Technol., 17, 38-55. https://doi.org/10.1016/j.trc.2008.06.002
- Xia, B., Cao, J., Zhang, X. and Peng, Y. (2020), "Automatic concrete sleeper crack detection using a one-stage detector", Int. J. Intell. Robot. Appl., 4(3), 319-327. https://doi.org/10.1007/s41315-020-00141-4
- Xiang, J., Chen, X. and Yang, L. (2009), "Crack identification in short shafts using wavelet-based element and neural networks", Struct. Eng. Mech., Int. J., 33(5), 543-560. https://doi.org/10.12989/sem.2009.33.5.543
- Xiang, J., Jiang, Z., Wang, Y. and Chen, X. (2011), "Study on damage detection software of beam-like structures", Struct. Eng. Mech., Int. J., 39(1), 77-91. https://doi.org/10.12989/sem.2011.39.1.077
- Xiang, J., Matsumoto, T., Long, J., Wang, Y. and Jiang, Z. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., Int. J., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335
- Xiang, J., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
- Xie, X., Xie, G. and Xu, X. (2018), "High precision image segmentation algorithm using SLIC and neighborhood rough set", Multimed.Tools Appl., 77(24), 31525-31543. https://doi.org/10.1007/s11042-018-6150-y
- Yang, Z., Chen, X., Tian, S. and He, Z. (2012), "Multiple damages detection in beam based approximate waveform capacity dimension", Struct. Eng. Mech., Int. J., 41(5), 663. https://doi.org/10.12989/sem.2012.41.5.663
- Yang, Z.B., Yu, J.T., Tian, S.H., Chen, X.F. and Xu, G.J. (2018), "A damage localization method based on the singular value decomposition (SVD) for plates", Smart Struct. Syst., Int. J., 22(5), 621-630. https://doi.org/10.12989/sss.2018.22.5.621
- Yin, H., Gong, Y. and Qiu, G. (2020), "Fast and efficient implementation of image filtering using a side window convolutional neural network", Signal Process., 176, 107717. https://doi.org/10.1016/j.sigpro.2020.107717
- Zaharah, A.B., Aaqib, S., Irina, S. and Andre, G.D. (2019), "Predictive maintenance using tree-based classification techniques: A case of railway switches", Transp. Res. Part C: Emerg. Technol., 101, 35-54. https://doi.org/10.1016/j.trc.2019.02.001
- Zeng, Z., Shuaibu, A.A., Liu, F., Ye, M. and Wang, W. (2020), "Experimental study on the vibration reduction characteristics of the ballasted track with rubber composite sleepers", Constr. Building Mater., 262, 120766. https://doi.org/10.1016/j.conbuildmat.2020.120766
- Zhong, Y. and Xiang, J. (2019), "Impact location on a stiffened composite panel using improved linear array", Smart Struct. Syst., Int. J., 24(2), 173-182. https://doi.org/10.12989/sss.2019.24.2.173