DOI QR코드

DOI QR Code

Hydraulic fracture simulation of concrete using the SBFEM-FVM model

  • Zhang, Peng (Nanjing Institute of Technology) ;
  • Du, Chengbin (Department of Engineering Mechanics, Hohai University) ;
  • Zhao, Wenhu (Department of Engineering Mechanics, Hohai University) ;
  • Zhang, Deheng (Nanjing Institute of Technology)
  • Received : 2020.02.08
  • Accepted : 2021.09.29
  • Published : 2021.12.10

Abstract

In this paper, a hybrid scaled boundary finite element and finite volume method (SBFEM-FVM) is proposed for simulating hydraulic-fracture propagation in brittle concrete materials. As a semi-analytical method, the scaled boundary finite element method is introduced for modelling concrete crack propagation under both an external force and water pressure. The finite volume method is employed to model the water within the crack and consider the relationship between the water pressure and the crack opening distance. The cohesive crack model is used to analyse the non-linear fracture process zone. The numerical results are compared with experimental data, indicating that the F-CMOD curves and water pressure changes under different loading conditions are approximately the same. Different types of water pressure distributions are also studied with the proposed coupled model, and the results show that the internal water pressure distribution has an important influence on crack propagation.

Keywords

Acknowledgement

The research described in this paper was financially supported by National Key Research and Development Plan, Intergovernmental Key Projects for International Scientific and Technological Innovation Cooperation (2018YFE0122400),the National Natural Science Foundation of China (Grant No:11372098), the Scientific Research Foundation for the High-level Personnel of Nanjing Institute of Technology (Grant No: YKJ201924),and the Open Research Fund of NJIT Institute of Industrial Economy and Innovation Management (Grant No: JGKC202005).

References

  1. Adachi, J., Siebrits, E. and Peirce, A. (2007), "Computer simulation of hydraulic fractures", Int. J. Rock Mech. Min. Sci., 44(5), 739-757. https://doi.org/10.1016/j.ijrmms.2006.11.006.
  2. Bruhwiler, E. and Saouma, V.E. (1995), "Water fracture interaction in concrete-Part I: Fracture properties", ACI. Mater. J., 92(3), 296-303.
  3. Bui, T.Q., Nguyen, N.T. and Nguyen, M.N. (2018), "Analysis of transient dynamic fracture parameters of cracked functionally graded composites by improved meshfree methods", Theor. Appl. Fract. Mech., 96, 642-657. https://doi.org/10.1016/j.tafmec.2017.10.005.
  4. Chen, B., Sun, Y., Barboza, B.R., Barron, A.R. and Li, C. (2020), "Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver", Eng. Fract. Mech., 229, 106928. https://doi.org/10.1016/j.engfracmech.2020.106928.
  5. Chen, D., Birk, C., Song, C. and Du, C. (2014), "A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method", Int. J. Numer. Meth. Eng., 97(13), 937-959. https://doi.org/10.1002/nme.4613.
  6. Chen, X., Du, C., You, M., Jiang, S. and Sun, L. (2017), "Experimental study on water fracture interactions in concrete", Eng. Fract. Mech., 179, 314-327. https://doi.org/10.1016/j.engfracmech.2017.04.050.
  7. Chiong, I., Ooi, E.T. and Song, C. (2014), "Scaled boundary polygons with application to fracture analysis of functionally graded materials", Int. J. Numer. Meth. Eng., 98(8), 562-589. https://doi.org/10.1002/nme.4645.
  8. Chopra, A.K. (1967), "Hydrodynamic pressures on dams during earthquakes", J. Eng. Mech. Div., 93(6), 205-224. https://doi.org/10.1061/JMCEA3.0000915
  9. Dai, S., Augarde, C., Du, C. and Chen, D. (2015), "A fully automatic polygon scaled boundary finite element method for modelling crack propagation", Eng. Fract. Mech., 133, 163-178. https://doi.org/10.1016/j.engfracmech.2014.11.011.
  10. Deeks, A.J. and Wolf, J.P. (2002), "A virtual work derivation of the scaled boundary finite-element method for elastostatics", Comput. Mech., 28(6), 489-504. https://doi.org/10.1007/s00466-002-0314-2.
  11. Fang, X. and Jin, F. (2007), "Coupled model of interaction between crack flow and concrete cracking", J. Hydraul. Eng., 38(12), 1466-1474. https://doi.org/10.3321/j.issn:0559-9350.2007.12.009.
  12. Funari, M.F., Greco, F., Lonetti, P. and Spadea, S. (2019), "A numerical model based on ALE formulation to predict crack propagation in sandwich structures", Frattura ed Integrita Strutturale, 47, 277-293. https://doi.org/10.3221/IGF-ESIS.47.21.
  13. Funari, M.F., Lonetti, P. and Spadea, S. (2019), "A crack growth strategy based on moving mesh method and fracture mechanics", Theor. Appl. Fract. Mech., 102, 103-115. https://doi.org/10.1016/j.tafmec.2019.03.007.
  14. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement. Concrete Res., 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7.
  15. Hunsweck, M.J., Shen, Y.X. and Lew, A.J. (2013), "A finite element approach to simulation of hydraulic fractures with lag", Int. J. Numer. Anal. Meter., 37(9), 993-1015. https://doi.org/10.1002/nag.1131.
  16. Jiang, S. and Du, C. (2017), "Coupled finite volume methods and extended finite element methods for the dynamic crack propagation modelling with the pressurized crack surfaces", Shock Vib., 2017, 1-16. https://doi.org/10.1155/2017/3751340.
  17. Jiang, S., Du, C. and Gu, C. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. https://doi.org/10.12989/sem.2014.49.5.597.
  18. Liu, C., Shen, Z. and Gan, L. (2018), "A hybrid finite volume and extended finite element method for hydraulic fracturing with cohesive crack propagation in quasi-brittle materials", Mater., 11(10), 1921. https://doi.org/10.3390/ma11101921.
  19. Liu, J., Lin, G., Hu, Z., et al. (2009), "Effect of water pressure distribution in cracks on fracture characteristics of gravity dams", J. Civil Eng., 42, 132-141. (in Chinese) https://doi.org/10.1007/s10965-008-9216-0.
  20. Menouillard, T. and Belytschko, T. (2010), "Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM", Int. J. Numer. Meth. Eng., 84(1), 47-72. https://doi.org/10.1002/nme.2882.
  21. Nishioka, T. (1997), "Computational dynamic fracture mechanics", Int. J. Fract., 86, 127-159. https://doi.org/10.1023/a:1007376924191.
  22. Shahani, A.R. and Fasakhodi, M.R.A. (2009), "Finite element analysis of dynamic crack propagation using remeshing technique", Mater. Des., 30(4), 1032-1041. https://doi.org/10.1016/j.matdes.2008.06.049.
  23. Shi, L., Yu, T. and Bui, T.Q. (2015), "Numerical modelling of hydraulic fracturing in rock mass by XFEM", Soil. Mech. Found. Eng., 52(2), 74-83. https://doi.org/10.1007/s11204-015-9309-9.
  24. Song, C. (2004), "A matrix function solution for the scaled boundary finite-element equation in statics", Comput. Meth. Appl. M., 193(23), 2325-2356. https://doi.org/10.1016/j.cma.2004.01.017.
  25. Song, C. (2006), "Analysis of singular stress fields at multi-material corners under thermal loading", Int. J. Numer. Meth. Eng., 65(5), 620-652. https://doi.org/10.1002/nme.1456.
  26. Song, C. (2018), The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation, John Wiley & Sons, Ltd., Chichester, West Sussex, UK.
  27. Song, C. and Wolf, J.P. (1997), "The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. M., 147(3), 329-355. https://doi.org/10.1016/ S0045-7825(97)00021-2.
  28. Song, C. and Wolf, J.P. (2002), "Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method", Comput. Struct., 80(2), 183-197. https://doi.org/10.1016/S0045-7949(01)00167-5.
  29. Tian, X., Du, C., Dai, S. and Chen, D. (2018), "Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM", Struct. Eng. Mech., 66(5), 649-663. https://doi.org/10.12989/sem.2018.66.5.649.
  30. Versteeg, H.K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, Essex, UK.
  31. Volokh, K.Y. and Needleman, A. (2002), "Buckling of sandwich beams with compliant interfaces", Comput. Struct., 80, 1329-1335. https://doi.org/10.1016/S0045-7949(02)00076-7.
  32. Wang, K., Zhang, Q., Xia, X., Wang, L. and Liu, X. (2015), "Analysis of hydraulic fracturing in concrete dam considering fluid-structure interaction using XFEM-FVM model", Eng. Fail. Anal., 57, 399-412. https://doi.org/10.1016/j.engfailanal.2015.07.012.
  33. Wang, Y., Hu, S., Lu, J. and Qiao, Y. (2019), "A note on the fracture behavior of concrete beams within water pressure under different loading rates", KSCE. J. Civil Eng., KSCE, 23(9), 3993-3999. https://doi.org/10.1007/s12205-019-1823-2.
  34. Wen, G., Liu, H. and Huang, H. (2018), "Meshless method simulation and experimental investigation of crack propagation of CBM hydraulic fracturing", Oil Gas Sci. Technol., 73(72), 1-17. https://doi.org/10.2516/ogst/2018074.
  35. Yang, Z.J. and Deeks, A.J. (2007), "Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method", Eng. Fract. Mech., 74(16), 2547-2573. https://doi.org/10.1016/j.engfracmech.2006.12.001.
  36. Yu, H. and Zhou, C. (2017), "Sandwich diffusion model for moisture absorption of flax/glass fiber reinforced hybrid composite", Compos. Struct, 188, 1-6. https://doi.org/10.1016/j.compstruct.2017.12.061.
  37. Zhang, P., Du, C., Zhao, W. and Sun, L. (2021), "Dynamic crack face contact and propagation simulation based on the scaled boundary finite element method", Comput. Meth. Appl. M., 385, 114044. https://doi.org/10.1016/j.cma.2021.114044.
  38. Zhang, X. and Bui, T.Q. (2015), "A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures", Eng. Comput., 32(2), 473-497. https://doi.org/10.1108/EC-08-2013-0203.
  39. Zhong, H., Li, H., Ooi, E.T. and Song, C. (2018), "Hydraulic fracture at the dam-foundation interface using the scaled boundary finite element method coupled with the cohesive crack model", Eng. Anal. Bound. Elem., 88, 41-53. https://doi.org/10.1016/j.enganabound.2017.11.009.