과제정보
This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No (DF-054-130-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.
참고문헌
- Abbas, I. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mechanica, 186(1-4), 229-237. https://doi.org/10.1007/s00707-006-0314-y.
- Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
- Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
- Abbas, I.A. and Marin, M. (2018), "Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse", Iran. J. Sci. Technol., Tran. Mech. Eng., 42(1), 57-71. https://doi.org/10.1007/s40997-017-0077-1.
- Abbas, I.A. and Zenkour, A.M. (2014), "The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory", J. Comput. Theor. Nanosci., 11(2), 331-338. https://doi.org/10.1166/jctn.2014.3356.
- Abbas, I.A., Alzahrani, F.S. and Elaiw, A. (2019), "A DPL model of photothermal interaction in a semiconductor material", Wav. Rand. Complex Media, 29(2), 328-343. https://doi.org/10.1080/17455030.2018.1433901.
- Abd-Elaziz, E.M. and Othman, M.I. (2020), "On a magneto-poro-thermoelastic medium under the influence of the Seebeck effect", Int. J. Numer. Anal. Meth. Geomech., 44(5), 705-719. https://doi.org/10.1002/nag.3039.
- Abo-Dahab, S. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028.
- Alesemi, M. (2018). "Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces", Int. Conf. Mater. Eng. Appl., 348(1), 012018. https://doi.org/10.1088/1757-899X/348/1/012018.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
- Biswas, S. and Abo-Dahab, S. (2020), "Electro-magneto-thermoelastic interactions in initially stressed orthotropic medium with Green-Naghdi model type-III", Mech. Bas. Des. Struct. Mach., 1-16. https://doi.org/10.1080/15397734.2020.1815212.
- Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Ind. J. Pure Appl. Math., 28(12), 1573-1594.
- Debnath, L. and Bhatta, D. (2014), Integral Transforms and Their Applications, Chapman and Hall/CRC.
- Dhaliwal, R.S. and Sherief, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Quart. Appl. Math., 38(1), 1-8. https://doi.org/10.1090/qam/575828.
- El-Naggar, A., Kishka, Z., Abd-Alla, A., Abbas, I., Abo-Dahab, S. and Elsagheer, M. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theor. Nanosci., 10(6), 1408-1417. https://doi.org/10.1166/jctn.2013.2862.
- Elsibai, K.A. and Youssef, H.M. (2011), "State-space approach to vibration of gold nano-beam induced by ramp type heating without energy dissipation in femtoseconds scale", J. Therm. Stress., 34(3), 244-263. https://doi.org/10.1080/01495739.2010.545737.
- Ezzat, M. and El-Bary, A. (2017), "Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. http://doi.org/10.12989/scs.2017.24.3.297.
- Green, A. and Naghdi, P. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15(2), 253-264. https://doi.org/10.1080/01495739208946136.
- Green, A. and Naghdi, P. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-208. https://doi.org/10.1007/BF00044969.
- Green, A.E. and Naghdi, P.M. (1991), "A re-examination of the basic postulates of thermomechanics", Proc. Roy. Soc. London Ser. A: Math. Phys. Sci., 432(1885), 171-194. https://doi.org/10.1098/rspa.1991.0012.
- Hobiny, A. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Result. Phys., 10, 385-390. https://doi.org/10.1016/j.rinp.2018.06.035.
- Hobiny, A.D. and Abbas, I.A. (2017), "A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity", Mech. Time-Depend. Mater., 21(1), 61-72. https://doi.org/10.1007/s11043-016-9318-8.
- Kar, A. and Kanoria, M. (2009), "Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect", Eur. J. Mech.-A/Solid., 28(4), 757-767. https://doi.org/10.1016/j.euromechsol.2009.01.003.
- Karimi Zeverdejani, P. and Kiani, Y. (2020), "Nonlinear generalized thermoelasticity of FGM finite domain based on Lord-Shulman theory", Wav. Rand. Complex Media, 1-22. https://doi.org/10.1080/17455030.2020.1788746.
- Kaur, H. and Lata, P. (2020), "Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures", Steel Compos. Struct., 34(2), 309-319. https://doi.org/10.12989/scs.2020.34.2.309.
- Kaur, I. and Lata, P. (2020), "Axisymmetric deformation in transversely isotropic magneto-thermoelastic solid with Green- Naghdi III due to inclined load", Int. J. Mech. Mater. Eng., 15(1), 1-9. https://doi.org/10.1186/s40712-019-0111-8.
- Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transf. Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018028397.
- Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. http://doi.org/10.12989/scs.2018.27.4.439.
- Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12989/sem.2019.70.2.245.
- Lata, P. and Kaur, I. (2019), "Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate", Geomech. Eng., 19(1), 29-36. http://doi.org/10.12989/gae.2019.19.1.029.
- Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.
- Lata, P. and Singh, S. (2020), "Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force", Geomech. Eng., 22(2), 109. http://doi.org/10.12989/gae.2020.22.2.109.
- Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141. http://doi.org/10.12989/scs.2021.38.2.141.
- Lata, P., Kumar, R. and Sharma, N. (2016), "Plane waves in an anisotropic thermoelastic", Steel Compos. Struct., 22(3), 567-587. http://doi.org/10.12989/scs.2016.22.3.567.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809.
- MArin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. http://doi.org/10.12989/sem.2017.61.3.381.
- Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3), 037113. https://doi.org/10.1063/1.4914912.
- Othman, M.I., Alharbi, A.M. and Al-Autabi, A.-A.M.K. (2020), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomech. Eng., 21(5), 447-459. http://doi.org/10.12989/gae.2020.21.5.447.
- Saeed, T., Abbas, I. and Marin, M. (2020), "A gl model on thermos-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. https://doi.org/10.3390/sym12030488.
- Sarkar, N., Mondal, S. and Othman, M.I. (2020), "Effect of the laser pulse on transient waves in a non-local thermoelastic medium under Green-Naghdi theory", Struct. Eng. Mech., 74(4), 471-479. http://doi.org/10.12989/sem.2020.74.4.471.
- Singh, B. (2007), "Wave propagation in a generalized thermoelastic material with voids", Appl. Math. Comput., 189(1), 698-709. https://doi.org/10.1016/j.amc.2006.11.123.
- Singh, B. and Pal, S. (2020), "Magneto-thermoelastic interaction with memory response due to laser pulse under Green-Naghdi theory in an orthotropic medium", Mech. Bas. Des. Struct. Mach., 1-18. https://doi.org/10.1080/15397734.2020.1798780.
- Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969.
- Vlase, S., Marin, M., Ochsner, A. and Scutaru, M. (2019), "Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system", Contin. Mech. Thermodyn., 31(3), 715-724. https://doi.org/10.1007/s00161-018-0722-y.
- Zenkour, A.M. and Abbas, I.A. (2014), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method", J. Vib. Control, 20(12), 1907-1919. https://doi.org/10.1177/1077546313480541.
- Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model", Int. J. Struct. Stab. Dyn., 14(07), 1450025. https://doi.org/10.1142/S0219455414500254.
- Zenkour, A.M. and Abbas, I.A. (2014), "Thermal shock problem for a fiber-reinforced anisotropic half-space placed in a magnetic field via G-N model", Appl. Math. Comput., 246 482-490. https://doi.org/10.1016/j.amc.2014.08.052.