Acknowledgement
This work was financially supported by Natural Science Foundation of Zhejiang Province (LY18E080017/GF22E085547/LQ19E090008), 2020 Science and Technology Project of Zhejiang Province Construction Department (2020K127), Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University.
References
- American Association of State Highway and Transportation Officials (AASHTO) (2010), Bridge Design Specifications, 5th ed, American Association of State Highway and Transportation Officials, Washington, American.
- American Concrete Institute (ACI) (2011), Report on Fiber Reinforced Concrete, ACI 544.1R-96, American Concrete Institute, Washington, American.
- American Institute of Steel Construction (AISC) (2011), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, American.
- ANSYS Software Documentation (2017), Release 18.0. ANSYS, Inc., Canonsburg, PA, American.
- Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng. Struct., 148, 23-35. http://doi.org/10.1016/j.engstruct.2017.06.039.
- Chi, Y., Xu, L.H. and Yu, H.S. (2014), "Plasticity model for hybrid fiber reinforced concrete under True Tri-axial Compression", J. Eng. Mech., ASCE, 140(2), 393-405. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000659.
- EN 1994-1-1 (2004), Eurocode 4: Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules, European Standard, European.
- GB 50010 (2014), Code for Design of Concrete Structures, Ministry of House and Urban-Rural Development of People's Republic of China, Beijing, China.
- GB50017 (2012), Code for Design of Steel Structures, Ministry of House and Urban-Rural Development of People's Republic of China, Beijing, China.
- Guezouli, S. and Lachal, A. (2012), "Numerical analysis of frictional contact effects in push-out tests", Eng. Struct., 40, 39-50. http://doi.org/10.1016/j.engstruct.2012.02.025.
- He, Y.L., Wu, X.D., Xiang, Y.Q., Wang, Y.H., Liu, L.S. and He, Z.H. (2017), "Mechanical behavior of stud shear connectors embedded in HFRC", Steel Compos. Struct., 24(2), 177-189. https://doi.org/10.12989/scs.2017.24.2.177.
- Huang, C.K. (2004), Structure of Fiber Reinforced Concrete, China Machine Press, Beijing. (in Chinese)
- Jongvivatsakul, P., Bui, L.V., Koyekaewphring, T., Kunawisarut, A., Hemstapat, N. and Stitmannaithum, B. (2019), "Using steel fiber-reinforced concrete precast panels for strengthening in shear of beams: An experimental and analytical investigation", Adv. Civil Eng., 2019, Article ID 4098505. https://doi.org/10.1155/2019/4098505.
- Kim, J.S., Kwark, J., Joh, C., Yoo, S.W. and Lee, K.C. (2015), "Headed stud shear connector for thin ultrahigh-performance concrete bridge deck", J. Constr. Steel Res., 108, 23-30. http://doi.org/10.1016/j.jcsr.2015.02.001.
- Lam, D. and El-Lobody, E. (2005), "Behavior of headed stud shear connectors in composite beam", J Struct. Eng., ASCE, 131(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96).
- Lee, P.G., Shim, C.S. and Chang, S.P. (2005), "Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges", J. Constr. Steel Res., 61, 1270-1285. http://doi.org/10.1016/j.jcsr.2005.01.007.
- Lee, Y.H., Kim, M.S., Kim, H. and Kim, D.J. (2014). "Shear resistance of stud connectors in high strength concrete", Struct. Eng. Mech., 52(4), 433-444. http://doi.org/10.12989/sem.2014.52.4.647.
- Luo, Y., Hoki, K., Hayashi, K. and Nakashima, M. (2016a), "Behavior and strength of headed stud-SFRCC shear connection. I: Experimental study", J. Struct. Eng., ASCE, 142(2), 1-10. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001363.
- Luo, Y., Hoki, K., Hayashi, K. and Nakashima, M. (2016b), "Behavior and strength of headed stud-SFRCC shear connection. II: Strength evaluation", J. Struct. Eng., ASCE, 142(3), 1-10. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001372.
- Nguyen, G.B. and Machacek, J. (2016), "Effect of local small diameter stud connectors on behavior of partially encased composite beams", Steel Compos. Struct., 20(2), 251-266. https://doi.org/10.12989/scs.2016.20.2.251.
- Nguyen, H., Mutsuyoshi, H. and Zatar, W. (2014), "Push-out tests for shear connections between UHPFRC slabs and FRP girder", Compos. Struct., 118, 528-547. http://doi.org/10.1016/j.compstruct.2014.08.003.
- Nguyen, H.T. and Kim, S.E. (2009), "Finite element modeling of push-out tests for large stud shear connectors", J. Constr. Steel Res., 65, 1909-1920. http://doi.org/10.1016/j.jcsr.2009.06.010.
- Precast/Prestressed Concrete Institute (PCI) (2004), Precast/Prestressed Concrete Institute Design Handbook: Precast and Prestressed Concrete, 6th Edition, Precast/Prestressed Concrete Institute, Chicago.
- Shim, C.S. and Kim, D.W. (2016), "Design codes on stud shear connectors for new details", Composite Construction in Steel and Concrete VII, North Queensland, February.
- Sriboonma, K. and Badie, S.S. (2012), "Practical steel confinements for wildly spaced clustered large stud shear connectors in composite bridge deck panel systems", Structures Congress 2010, Florida, May.
- Su, Q., Yang, G. and Bradford, M.A. (2014), "Static behaviour of multi-row stud shear connectors in high-strength concrete", Steel Compos. Struct., 17(6), 967-980. https://doi.org/10.12989/scs.2014.17.6.967.
- Vacev, T., Bonic, Z., Prolovic, V., Davidovic, N. and Lukic, D. (2015), "Testing and finite element analysis of reinforced concrete column footings failing by punching shear", Eng. Struct., 92, 1-14. http://doi.org/10.1016/j.engstruct.2015.02.027
- Wang, A.J. (2012), "Numerical investigation into headed shear connectors under fire", J. Struct. Eng., 138(1), 118-122. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000428.
- Willam, K.J. and Warnke, E.P. (1974), "Constitutive model for the triaxial behaviour of concrete, seminar on concrete structures subjected to triaxial stresses", International Association of Bridge and Structural Engineering Conference, Bergamo, Italy.
- Xia, Y., Chen, L., Ma, H. and Su, D. (2019), "Experimental and numerical study on shear studs connecting steel girder and precast concrete deck", Struct. Eng. Mech., 71(4), 433-444. http://doi.org/10.12989/sem.2019.71.4.433.
- Xu, C., Su, Q. and Masuya, H. (2017), "Static and fatigue performance of stud shear connector in steel fiber reinforced concrete", Steel Compos. Struct., 24(4), 467-479. https://doi.org/10.12989/scs.2017.24.4.467.
- Xu, X., Liu, Y. and He, J. (2014), "Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures", Constr. Build. Mater., 53, 533-546. http://doi.org/10.1016/j.conbuildmat.2013.12.011.
- Yu Liang, H., Yi Qiang, X., Li Si, L. and Ying, Y. (2018), "Mechanical behavior of steel-HFRC composite girders", J. Bridge Eng., ASCE, 23(10), 04018070. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001275.
- Zhang, Y. (2010), "Study on uniaxial compressive constitutive relationship and uniaxial tensile behavior of steel-polypropylene hybrid fiber reinforced concrete", Ph.D. Thesis, Wuhan Univ., Wuhan, China.