DOI QR코드

DOI QR Code

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Khashaba, Usama A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Ahmed, Khaled I. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Najjar, Ismael (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Melaibari, Ammar (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Abdraboh, Azza M. (Physics Department, Faculty of Science, Banha University)
  • Received : 2021.05.31
  • Accepted : 2021.09.24
  • Published : 2021.12.10

Abstract

This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

Keywords

Acknowledgement

This project was supported by the National Science, Technology, and Innovation Plan (NSTIP) strategic technologies program in the Kingdom of Saudi Arabia under grant number 15-ADV4307-03. The authors, gratefully appreciated to Science and Technology Unit at King Abdulaziz University for providing technical and financial support.

References

  1. Abdelwahed, M.S., El-Baz, M.A. and El-Midany, T.T. (2012), "A proposed performance prediction approach for manufacturing process using ANNs", World Acad. Sci., Eng. Technol., 6, 778-783. https://doi.org/10.5281/zenodo.1074847.
  2. Ahmadi, S. and Zeinedini, A. (2020), "Experimental, theoretical and numerical investigation of the drilling effects on mode I delamination of laminated composites", Aerosp. Sci. Technol., 104, 105992. https://doi.org/10.1016/j.ast.2020.105992.
  3. Al-wandi, S., Ding, S. and Mo, J. (2017), "An approach to evaluate delamination factor when drilling carbon fiber-reinforced plastics using different drill geometries: experiment and finite element study", Int. J. Adv. Manuf. Technol., 93(9-12), 4043-4061. https://doi.org/10.1007/s00170-017-0880-2.
  4. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
  5. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  6. Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
  7. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. https://doi.org/10.12989/scs.2019.31.2.113.
  8. Bhat, R., Mohan, N., Sharma, S., Pai, D. and Kulkarni, S. (2020), "Multiple response optimisation of process parameters during drilling of GFRP composite with a solid carbide twist drill", Mater. Today: Proc., 28, 2039-2046. https://doi.org/10.1016/j.matpr.2020.02.384.
  9. Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell experimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445.
  10. Cadorin, N., Zitoune, R., Seitier, P. and Collombet, F. (2015), "Analysis of damage mechanism and tool wear while drilling of 3D woven composite materials using internal and external cutting fluid", J. Compos. Mater., 49(22), 2687-2703. https://doi.org/10.1177/0021998314553045.
  11. Chandrasekharan, V., Kapoor, S.G. and DeVor, R.E. (1995), "A mechanistic approach to predicting the cutting forces in drilling: with application to fiber-reinforced composite materials", J. Eng. Indus., 117(4), 559-570. https://doi.org/10.1115/1.2803534.
  12. Di Benedetto, R.M., Botelho, E.C., Janotti, A., Junior, A.A. and Gomes, G.F. (2021), "Development of an artificial neural network for predicting energy absorption capability of thermoplastic commingled composites", Compos. Struct., 113131. https://doi.org/10.1016/j.compstruct.2020.113131.
  13. Durao, L.M.P., Goncalves, D.J., Tavares, J.M.R., de Albuquerque, V.H.C., Vieira, A.A. and Marques, A.T. (2010), "Drilling tool geometry evaluation for reinforced composite laminates", Compos. Struct., 92(7), 1545-1550. https://doi.org/10.1016/j.compstruct.2009.10.035.
  14. El-Midany, T.T., El-Baz, M.A. and Abd-ElWahed, M.S. (2020), "A proposed performance prediction approach for manufacturing process using Artifical Neural Networks (Dept. M)", MEJ. Mansoura Eng. J., 36(4), 39-49. https://10.21608/bfemu.2020.122176.
  15. El-Midany, T.T., El-Baz, M.A. and Abdelwahed, M.S. (2013), "Improve characteristics of manufactured products using artificial neural network performance prediction model", Int. J. Rec. Adv. Mech. Eng., 2(4), 23-34.
  16. Elamary, A.S. and Abd-ELwahab, R.K. (2016), "Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending", Struct. Eng. Mech., 57(5), 937-949. https://doi.org/10.12989/sem.2016.57.5.937.
  17. Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36(2), 143-161. http://doi.org/10.12989/scs.2020.36.2.143.
  18. Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
  19. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  20. Fazilati, J. (2018), "Stability of tow-steered curved panels with geometrical defects using higher order FSM", Steel Compos. Struct., 28(1), 25-37. https://doi.org/10.12989/scs.2018.28.1.025.
  21. Feito, N., Munoz-Sanchez, A., Diaz-Alvarez, A. and Miguelez, M.H. (2019), "Multi-objective optimization analysis of cutting parameters when drilling composite materials with special geometry drills", Compos. Struct., 225, 111187. https://doi.org/10.1016/j.compstruct.2019.111187.
  22. Formisano, A., Papa, I., Lopresto, V. and Langella, A. (2019), "Influence of the manufacturing technology on impact and flexural properties of GF/PP commingled twill fabric laminates", J. Mater. Proc. Technol., 274, 116275. https://doi.org/10.1016/j.jmatprotec.2019.116275.
  23. Gaitonde, V.N., Karnik, S.R., Rubio, J.C., Correia, A.E., Abrao, A.M. and Davim, J.P. (2011), "A study aimed at minimizing delamination during drilling of CFRP composites", J. Compos. Mater., 45(22), 2359-2368. https://doi.org/10.1177/0021998311401087.
  24. Geier, N., Davim, J.P. and Szalay, T. (2019), "Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: a review", Compos. Part A: Appl. Sci. Manuf., 125, 105552. https://doi.org/10.1016/j.compositesa.2019.105552.
  25. Gemi, L., Koklu, U., Yazman, S. and Morkavuk, S. (2020a), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests", Compos. Part B: Eng., 186, 107787. https://doi.org/10.1016/j.compositesb.2020.107787.
  26. Gemi, L., Morkavuk, S., Koklu, U. and Yazman, S. (2020b), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality", Compos. Struct., 235, 111737. https://doi.org/10.1016/j.compstruct.2019.111737.
  27. Geng, D., Liu, Y., Shao, Z., Lu, Z., Cai, J., Li, X., ... & Zhang, D. (2019), "Delamination formation, evaluation and suppression during drilling of composite laminates: a review", Compos. Struct., 216, 168-186. https://doi.org/10.1016/j.compstruct.2019.02.099.
  28. Ghafarizadeh, S., Lebrun, G. and Chatelain, J.F. (2016), "Experimental investigation of the cutting temperature and surface quality during milling of unidirectional carbon fiber reinforced plastic", J. Compos. Mater., 50(8), 1059-1071. https://doi.org/10.1177/0021998315587131.
  29. Ghosh, A. and Chakravorty, D. (2019), "Application of FEM on first ply failure of composite hyper shells with various edge conditions", Steel Compos. Struct., 32(4), 423-441. https://doi.org/10.12989/scs.2019.32.4.423.
  30. Guenfoud, H., Himeur, M., Ziou, H. and Guenfoud, M. (2018), "The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation", Struct. Eng. Mech., 68(4), 385-398. http://doi.org/10.12989/sem.2018.68.4.385.
  31. Heidary, H., Mehrpouya, M.A., Saghafi, H. and Minak, G. (2020), "Critical thrust force and feed rate determination in drilling of GFRP laminate with backup plate", Struct. Eng. Mech., 73(6), 631-640. http://doi.org/10.12989/sem.2020.723.6.63.
  32. Ho-Cheng, H. and Dharan, C.K.H. (1990), "Delamination during drilling in composite laminates", J. Eng. Indus., 112(3), 236-239. https://doi.org/10.1115/1.2899580.
  33. Hou, G., Zhang, K., Fan, X., Luo, B., Cheng, H., Yan, X. and Li, Y. (2020), "Analysis of exit-ply temperature characteristics and their effects on occurrence of exit-ply damages during UD CFRP drilling", Compos. Struct., 231, 111456. https://doi.org/10.1016/j.compstruct.2019.111456.
  34. Hrechuk, A., Bushlya, V. and Stahl, J.E. (2018), "Hole-quality evaluation in drilling fiber-reinforced composites", Compos. Struct., 204, 378-387. https://doi.org/10.1016/j.compstruct.2018.07.105.
  35. Ismail, S.O., Ojo, S.O. and Dhakal, H.N. (2017), "Thermo-mechanical modelling of FRP cross-ply composite laminates drilling: Delamination damage analysis", Compos. Part B: Eng., 108, 45-52. https://doi.org/10.1016/j.compositesb.2016.09.100.
  36. Jia, Z., Chen, C., Wang, F. and Zhang, C. (2020b), "Analytical study of delamination damage and delamination-free drilling method of CFRP composite", J. Mater. Proc. Technol., 282, 116665. https://doi.org/10.1016/j.jmatprotec.2020.116665.
  37. Jia, Z.Y., Zhang, C., Wang, F.J., Fu, R. and Chen, C. (2020a), "Multi-margin drill structure for improving hole quality and dimensional consistency in drilling Ti/CFRP stacks", J. Mater. Proc. Technol., 276, 116405. https://doi.org/10.1016/j.jmatprotec.2019.116405.
  38. Joshi, H.S., Pal, S.K. and Chakraborty, G. (2018), "Study on the delamination of GFRP composites in drilling: A finite element model", Simulations for Design and Manufacturing, Springer, Singapore.
  39. Karimi, N.Z., Heidary, H. and Minak, G. (2016), "Critical thrust and feed prediction models in drilling of composite laminates", Compos. Struct., 148, 19-26. http://doi.org/10.1016/j.compstruct.2016.03.059.
  40. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387.
  41. Kharwar, P.K. and Verma, R.K. (2019), "Grey embedded in artificial neural network (ANN) based on hybrid optimization approach in machining of GFRP epoxy composites", FME Trans., 47(3), 641-648. https://doi.org/10.5937/fmet1903641P.
  42. Khashaba, U.A. (2013), "Drilling of polymer matrix composites: a review", J. Compos. Mater., 47(15), 1817-1832. https://doi.org/10.1177/0021998312451609.
  43. Khashaba, U.A. and El-Keran, A.A. (2017), "Drilling analysis of thin woven glass-fiber reinforced epoxy composites", J. Mater. Proc. Technol., 249, 415-425. http://doi.org/10.1016/j.jmatprotec.2017.06.011.
  44. Khashaba, U.A. and Othman, R. (2017), "Low-velocity impact of woven CFRE composites under different temperature levels", Int. J. Impact Eng., 108, 191-204. http://doi.org/10.1016/j.ijimpeng.2017.04.023.
  45. Khashaba, U.A., Abd-Elwahed, M.S., Ahmed, K.I., Najjar, I., Melaibari, A. and Eltaher, M.A. (2020), "Analysis of the machinability of GFRE composites in drilling processes", Steel Compos. Struct., 36(4), 417-426. https://doi.org/10.12989/scs.2020.36.4.417.
  46. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I. and Megahed, A.A. (2010a), "Machinability analysis in drilling woven GFR/epoxy composites: Part I-Effect of machining parameters", Compos. Part A: Appl. Sci. Manuf., 41(3), 391-400. https://doi.org/10.1016/j.compositesa.2009.11.006.
  47. Khashaba, U.A., El-Sonbaty, I.A., Selmy, A.I. and Megahed, A.A. (2010b), "Machinability analysis in drilling woven GFR/epoxy composites: Part II-Effect of drill wear", Compos. Part A: Appl. Sci. Manuf., 41(9), 1130-1137. https://doi.org/10.1016/j.compositesa.2010.04.011.
  48. Khashaba, U.A., Seif, M.A. and Elhamid, M.A. (2007), "Drilling analysis of chopped composites", Compos. Part A: Appl. Sci. Manuf., 38(1), 61-70. https://doi.org/10.1016/j.compositesa.2006.01.020.
  49. Kumar, J., Verma, R.K. and Debnath, K. (2020), "A new approach to control the delamination and thrust force during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber", Compos. Struct., 253, 112786. https://doi.org/10.1016/j.compstruct.2020.112786.
  50. Liu, S., Yang, T., Liu, C., Jin, Y., Sun, D. and Shen, Y. (2020a), "An analytical delamination model of drilling aramid fiber-reinforced plastics by brad drill", Int. J. Adv. Manuf. Technol., 108(9), 3279-3290. https://doi.org/10.1007/s00170-020-05628-9.
  51. Liu, S., Yang, T., Liu, C., Jin, Y., Sun, D. and Shen, Y. (2020b), "Modelling and experimental validation on drilling delamination of aramid fiber reinforced plastic composites", Compos. Struct., 236, 111907. https://doi.org/10.1016/j.compstruct.2020.111907.
  52. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  53. Luo, B., Li, Y., Zhang, K., Cheng, H. and Liu, S. (2016), "Effect of workpiece stiffness on thrust force and delamination in drilling thin composite laminates", J. Compos. Mater., 50(5), 617-625. https://doi.org/10.1177/0021998315580449.
  54. Mahieddine, A., Ouali, M. and Mazouz, A. (2015), "Modeling and simulation of partially delaminated composite beams", Steel Compos. Struct., 18(5), 1119-1127. https://doi.org/10.12989/scs.2015.18.5.1119.
  55. Merino-Perez, J.L., Royer, R., Ayvar-Soberanis, S., Merson, E. and Hodzic, A. (2015), "On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation", Compos. Struct., 123, 161-168. https://doi.org/10.1016/j.compstruct.2014.12.033.
  56. Merino-Perez, J.L., Royer, R., Merson, E., Lockwood, A., Ayvar-Soberanis, S. and Marshall, M.B. (2016), "Influence of workpiece constituents and cutting speed on the cutting forces developed in the conventional drilling of CFRP composites", Compos. Struct., 140, 621-629. https://doi.org/10.1016/j.compstruct.2016.01.008.
  57. Mishra, P.K., Pradhan, A.K., Pandit, M.K. and Panda, S.K. (2020), "Thermoelastic effect on inter-laminar embedded delamination characteristics in Spar Wingskin Joints made with laminated FRP composites", Steel Compos. Struct., 35(3), 439. https://doi.org/10.12989/scs.2020.35.3.439.
  58. Mudhukrishnan, M., Hariharan, P. and Palanikumar, K. (2020), "Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills", Measure., 149, 106973. https://doi.org/10.1016/j.measurement.2019.106973.
  59. Murthy, B.R.N., GS, V., Narayan, S., Naik, N., Sooriyaperakasam, N., Karthik, A. and Borkhade, R. (2019), "Mechanical modelling and simulation of thrust force in drilling process in GFRP composite laminates: A novel system dynamics approach", Cogent Eng., 6(1), 1706981. https://doi.org/10.1080/23311916.2019.170698.
  60. Narasimhan, K. (2004), The Six Sigma Handbook Revised and Expanded: A Complete Guide for Greenbelts, Blackbelts, and Managers at All Levels, The TQM Magazine.
  61. Ojo, S.O., Ismail, S.O., Paggi, M. and Dhakal, H.N. (2017), "A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation", Compos. Part B: Eng., 124, 207-217. https://doi.org/10.1016/j.compositesb.2017.05.039.
  62. Qiu, X., Li, P., Li, C., Niu, Q., Chen, A., Ouyang, P. and Ko, T. J. (2018), "Study on chisel edge drilling behavior and step drill structure on delamination in drilling CFRP", Compos. Struct., 203, 404-413. https://doi.org/10.1016/j.compstruct.2018.07.007.
  63. Ramesh, B., Elayaperumal, A., Satishkumar, S., Kumar, A., Jayakumar, T. and Dinakaran, D. (2016), "Influence of cooling on the performance of the drilling process of glass fibre reinforced epoxy composites", Arch. Civil Mech. Eng., 16, 135-146. http://doi.org/10.1016/j.acme.2015.03.001.
  64. Reisgen, U., Schiebahn, A., Lotte, J., Hopmann, C., Schneider, D. and Neuhaus, J. (2020), "Innovative joining technology for the production of hybrid components from FRP and metals", J. Mater. Proc. Technol., 282, 116674. https://doi.org/10.1016/j.jmatprotec.2020.116674.
  65. Saoudi, J., Zitoune, R., Mezlini, S., Gururaja, S. and Seitier, P. (2016), "Critical thrust force predictions during drilling: analytical modeling and X-ray tomography quantification", Compos. Struct., 153, 886-894. https://doi.org/10.1016/j.compstruct.2016.07.015.
  66. Shahri, M.N., Najafabadi, M.A. and Akhlaghi, M. (2020), "On the improvement of analytical delamination model for drilling of laminated composites using Galerkin method", Compos. Part B: Eng., 194, 108021. https://doi.org/10.1016/j.compositesb.2020.108021.
  67. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  68. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The Effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  69. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  70. Shetty, N., Shahabaz, S.M., Sharma, S.S. and Shetty, S.D. (2017), "A review on finite element method for machining of composite materials", Compos. Struct., 176, 790-802. https://doi.org/10.1016/j.compstruct.2017.06.012.
  71. Shyha, I.S., Aspinwall, D.K., Soo, S.L. and Bradley, S. (2009), "Drill geometry and operating effects when cutting small diameter holes in CFRP", Int. J. Mach. Tool. Manuf., 49(12-13), 1008-1014. https://doi.org/10.1016/j.ijmachtools.2009.05.009.
  72. Suresh, M., Sanders, A., Prajapati, P., Kaipa, K. and Kravchenko, O.G. (2020), "Composite sandwich repair using through-thickness reinforcement with robotic hand micro-drilling", Compos. Struct., 248, 112473. https://doi.org/10.1016/j.compstruct.2020.112473.
  73. Tagliaferri, V., Caprino, G. and Diterlizzi, A. (1990), "Effect of drilling parameters on the finish and mechanical properties of GFRP composites", Int. J. Mach. Tool. Manuf., 30(1), 77-84. https://doi.org/10.1016/0890-6955(90)90043-I.
  74. Tan, C.L. and Azmi, A.I. (2017), "Analytical study of critical thrust force for on-set delamination damage of drilling hybrid carbon/glass composite", Int. J. Adv. Manuf. Technol., 92(1-4), 929-941. https://doi.org/10.1007/s00170-017-0152-1.
  75. Tang, W., Chen, Y., Yang, H., Wang, H. and Yao, Q. (2018), "Numerical investigation of delamination in drilling of carbon fiber reinforced polymer composites", Appl. Compos. Mater., 25(6), 1419-1439. https://doi.org/10.1007/s10443-018-9675-3.
  76. Tian, T. and Cole, K.D. (2012), "Anisotropic thermal conductivity measurement of carbon-fiber/epoxy composite materials", Int. J. Heat Mass Transf., 55(23-24), 6530-6537. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.059.
  77. Tong, Z., Chen, Y., Huang, Q., Song, X., Luo, B. and Xu, X. (2020), "Experimental and analytical study on continuous GFRP-concrete decks with steel bars", Struct. Eng. Mech., 76(6), 737-749. https://doi.org/10.12989/sem.2020.76.6.737.
  78. Wang, Q. and Jia, X. (2020), "Multi-objective optimization of CFRP drilling parameters with a hybrid method integrating the ANN, NSGA-II and fuzzy C-means", Compos. Struct., 235, 111803. https://doi.org/10.1016/j.compstruct.2019.111803.
  79. Zhang, B., Wang, F., Wang, Q. and Zhao, X. (2021), "Novel fiber fracture criteria for revealing forming mechanisms of burrs and cracking at hole-exit in drilling Carbon Fiber Reinforced Plastic", J. Mater. Proc. Technol., 289, 116934. https://doi.org/10.1016/j.jmatprotec.2020.116934.
  80. Zhang, B., Wang, F., Wang, X., Li, Y. and Wang, Q. (2020), "Optimized selection of process parameters based on reasonable control of axial force and hole-exit temperature in drilling of CFRP", Int. J. Adv. Manuf. Technol., 110(3), 797-812. https://doi.org/10.1007/s00170-020-05868-9.
  81. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M., and She, G.L. (2021), "On snap-buckling of FGCNTR curved nanobeams considering surface effects", Steel Compos. Struct., 8(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  82. Zitoune R, Cadorin N, Collombet F, Sima M. (2017), "Temperature and wear analysis in function of the cutting tool coating when drilling of composite structure: In situ measurement by optical fiber", Wear, 377(15), 1849-1858. https://doi.org/10.1016/j.wear.2016.12.015.
  83. Zou, F., Dang, J., Cai, X., An, Q., Ming, W. and Chen, M. (2020), "Hole quality and tool wear when dry drilling of a new developed metal/composite co-cured material", Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf., 234(6-7), 980-992. https://doi.org/10.1177/0954405420901420.